Volume 6, Issue 1 (5-2019)                   nbr 2019, 6(1): 30-38 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F. The anti-bacterial effects of magnetic iron oxide nanoparticles produced by biological method and the kinetic study of mortality of common strains in clinical infections. nbr 2019; 6 (1) :30-38
URL: http://nbr.khu.ac.ir/article-1-2806-en.html
Hakim Sabzevari University , biochemhsu@gmail.com
Abstract:   (6335 Views)

New properties of nano-materials have made nanotechnology the leading part of biology and medical sciences. Due to their various biomedical properties, iron-based magnetic nanoparticles (MNPs) have been highly considered by biological researchers. Nowadays, increasing resistance to antibiotics is a major problem in treating clinical infections. Finding new antibacterial agents is therefore essential for the treatment of resistant strains. In this study, the iron oxide MNPs were produced using culture-medium supernatant of a newly isolated bacterium to investigate the inhibitory effects of the NPs on strains with a major role in clinical infections. Biosynthesis of iron oxide MNPs were detected by UV-Vis spectroscopy and the average size of particles was estimated by dynamic light scattering technique. The anti-bacterial activity of these NPs against E. coli and S. aureus was investigated using methods for the calculation of bacterial sensitivity coefficient. In the presence of NPs, the highest sensitivity coefficient value was observed for E. coli in 1xMIC concentration. On the other hand, S. aureus showed the lowest value. The death rate of the two strains in contact with NPs followed the first order kinetic equation and the survival rate decreased with the increase of exposure time. The results of this study as well as the high functionality of iron oxide MNPs, make its application desirable in the prevention and treatment of clinical infections.

 

Full-Text [PDF 1230 kb]   (2423 Downloads)    
Type of Study: Original Article | Subject: Microbiology
Received: 2017/04/15 | Revised: 2019/05/5 | Accepted: 2018/12/23 | Published: 2019/04/30 | ePublished: 2019/04/30

References
1. Arakha, M., Pal, S., Samantarrai, D., Panigrahi, T.K., Mallick, B.C., Pramanik, K., Mallick, B. and Jha, S. 2015. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanopar-ticle-bacteria interface. - Sci. Rep. 5: 1-12. [DOI:10.1038/srep14813]
2. Bhabra, G., Sood, A., Fisher, B., Cartwright, L., Saunders, M., Evans, W.H., Surprenant, A., Lopez-Castejon, G., Mann, S., Davis, S.A., Hails, L.A., Ingham, E., Verkade, P., Lane, J., Heesom, K., Newson, R. and Case, C.P. 2009. Nanoparticles can cause DNA damage across a cellular barrier. - Nat. Nanotechnol. 4: 876-883. [DOI:10.1038/nnano.2009.313]
3. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf , S.M., Sanyal, M. and Sastry, M. 2006. Extracellular biosynthesis of magnetite using fungi. - Small. 2: 135-141. [DOI:10.1002/smll.200500180]
4. Bharde, A., Wani, A., Shouche, Y., Joy, P.A., Prasad, B.L.V. and Sastry, M. 2005. Bacterial aerobic synthesis of nanocrystalline magnetite. - J. Am. Chem. Soc. 127: 9326-9327. [DOI:10.1021/ja0508469]
5. Brar, S. K. and Verma, M. 2011. Measurement of nanoparticles by light-scattering techniques. - Trends Anal. Chem. 30: 4-17. [DOI:10.1016/j.trac.2010.08.008]
6. Hajipour, M.J., Fromm, K.M., Ashkarran, A.A., Aberasturi, D.J. De, Larramendi I.R. De, Rojo, T., Serpooshan, V., Parak, W.J. and Mahmoudi, M. 2012. Antibacterial properties of nanoparticles. - Trends Biotechnol. 30: 499-511. [DOI:10.1016/j.tibtech.2012.06.004]
7. Hulkoti, N.I. and Taranath, T.C. 2014. Biosynthesis of nanoparticles using microbes- a review. - Colloids Surf. B Biointerfaces 121: 474-83. [DOI:10.1016/j.colsurfb.2014.05.027]
8. Ismail, R. A., Sulaiman, G.M., Abdulrahman, S. A. and Marzoog, T.R. 2015. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. - Mater. Sci. Eng. C Mater. Biol. Appl. 53: 286-297. [DOI:10.1016/j.msec.2015.04.047]
9. LIoyd, J.R., Byrne, J.M. and Coker, V.S. 2011. Biotechnological synthesis of functional nanom-aterials. - Curr. Opin. Biotechnol. 22: 509-515. [DOI:10.1016/j.copbio.2011.06.008]
10. Makarov, V.V., Makarova, S.S., Love, A.J., Sinit-syna, O.V., Dudnik, A.O., Yaminsky, I.V., Taliansky, M.E. and Kalinina, N.O. 2014. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa Plants. - Langmuir. 30: 5982-5988. [DOI:10.1021/la5011924]
11. Nasrollahi, Y.K., Kim, B.H. and Jung, G. 2009. Antifungal activity of silver nanoparticles on some fungi. - Plant Dis. 93: 1037-1043. [DOI:10.1094/PDIS-93-10-1037]
12. Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M. V., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. 2009. Understanding biop-hysicochemical interactions at the nano-bio interface. - Nat. Mater. 8: 543-557. [DOI:10.1038/nmat2442]
13. Panáček, A., Kolář, M., Večeřová, R., Prucek, R., Soukupová, J., Kryštof, V., Hamal, P., Zbořil, R. and Kvítek, L. 2009. Antifungal activity of silver nanoparticles against Candida spp. - Biomat-erials. 30: 6333-6340. [DOI:10.1016/j.biomaterials.2009.07.065]
14. Seil, J.T. and Webster, T.J. 2012. Antimicrobia applications of nanotechnology: methods and literature. - Int. J. Nanomedicine. 7: 2767-2781. [DOI:10.2147/IJN.S24805]
15. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, K.J. 2002. Metal oxide nanoparticles as bactericidal agents. pdf. - Langmuir. pp 6679-6686. [DOI:10.1021/la0202374]
16. Thukkaram, M., Sitaram, S., Kannaiyan, S.K. and Subbiahdoss, G. 2014. Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. - Int. J. Biomater. 2014:1-6. [DOI:10.1155/2014/716080]
17. Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S. and Webster, T.J. 2010. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. - Int. J. Nanomedicine 5: 277-283. [DOI:10.2147/IJN.S9220]
18. Yoon, K.Y., Byeon, J.H., Park, J.H. and Hwang, J. 2007. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanopar-ticles. - Sci. Total Environ. 373: 572-575. [DOI:10.1016/j.scitotenv.2006.11.007]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb