Search published articles


Showing 2 results for Gypsum Karst

Ahmad Abbasnejad,
Volume 4, Issue 1 (11-2010)
Abstract

The previous studies underteaken in the region indicate that the Ekhtiarabad and Chah-Darya sinkholes have occurred as a result of dissolution of underground gypsum rocks. Hence, they represent the likelyhood of hidden and threatening caves in the region. The presence of gypsiferous formations having surficial karstic features attest to this supposition. So, in order to determine the possible dissolving sites which may contain caves, the electrical conductivity and evaporite dissolution index maps of Kerman-Baghin aquifier were prepared and matched with groundwater recharge and mobility conditions. Accordingly, four suspected hidden- cave sites were recognized which include a large area around Ekhtiarabad village (as the most suspected site), one spot at the northwest of Baghin Plain and two other areas (south of Baghin and south and southwest or Kabutarkhan). Based on the utilized hydrogeochemical criteria, these last two areas may contain hidden caves, but, due to unsuitable hydrodynamic conditions, the possibility seems weak.
Eng. Mohammad Hossein Jowlar, Dr. Mashalah Khamehchiyan, Dr. Mohammad Reza Nikudel, Dr. Asghar Azadi,
Volume 19, Issue 6 (12-2025)
Abstract

Over the past three decades, research into the factors influencing the development of gypsum karsts has become an active and growing area of study. The mechanically weak nature of gypsum, along with its rapid dissolution and deformability, contributes to the formation of gypsum karsts, voids, and caverns in regions where gypsum deposits are present. This process can significantly undermine geotechnical stability by reducing bearing capacity and increasing settlement. This issue is particularly critical in heavy industrial settings such as petrochemical facilities, where large storage tanks and other infrastructure are founded directly on the ground surface. Consequently, identifying and assessing these processes is essential for the design, construction, and maintenance of engineering projects. This study assesses subsurface gypsum karsts within the Masjed Soleyman Petrochemical site using an integrated geophysical and geotechnical approach. Ground Penetrating Radar (GPR) was employed across 24 profiles totaling 2,307 meters, also geotechnical data were obtained from 113 boreholes drilled to depths of 20–40 meters. Following data analysis, 32 occurrences of subsurface gypsum karsts were identified at depths ranging from 4 to 36 meters. Subsequently, surface water drainage patterns were analyzed and digitized from historical Corona satellite imagery (1968). In parallel, groundwater levels and flow direction maps were generated using data from electric probe depth finder measurements in boreholes. The integration of these datasets revealed that most gypsum karsts are concentrated in areas where groundwater tends to accumulate and flow. Finally, groundwater sampling and chemical analysis revealed an average sulfate concentration of approximately 1,480 ppm, indicative of a severe sulfate exposure environment.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb