Volume 13, Issue 49 (11-2024)                   serd 2024, 13(49): 1-22 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noori Darzikolaie P, Razzaghi Borkhani F, Azizi Khalkheili T, Barati A A. Explaining the Efficiency of the Water, Energy, and Food Nexus in Rice Farms of Sari County. serd 2024; 13 (49) : 1
URL: http://serd.khu.ac.ir/article-1-4046-en.html
1- Sari Agricultural Sciences and Natural Resources University
2- Sari Agricultural Sciences and Natural Resources University , F.razzaghi@sanru.ac.ir
3- University of Tehran
Abstract:   (1302 Views)
Objective: This study aimed to develop a model to improve the efficiency of the water-energy-food (WEF) nexus in rice farming in Sari County.
Method: The research was conducted using a quantitative, survey-based approach and falls under the category of applied studies. The statistical population consisted of 25,590 rice farmers in Sari County, with a sample size of 170 farmers, determined using G-Power software. A multi-stage stratified sampling method with proportional allocation was employed. Data collection was conducted through a researcher-made questionnaire, whose face and content validity were confirmed by experts. The reliability of the research tool was assessed using Cronbach's alpha coefficient. Data analysis was performed using Data Envelopment Analysis (DEA) to evaluate the efficiency of the WEF nexus.
Results: The findings indicate that the efficiency index of the WEF nexus among the studied rice farms was 0.198, reflecting very poor efficiency in rice production. Specific observations include: 70% of the studied units exhibited unsatisfactory nexus efficiency; A negative correlation was found between the amount of water and energy consumed and the nexus efficiency index; Larger-scale farms demonstrated higher nexus efficiency, while smaller farms exhibited lower efficiency levels; There was a positive correlation between the nexus efficiency index and farm size, suggesting that economies of scale positively influence efficiency.
Conclusion: The study highlights significant inefficiencies in the WEF nexus within rice farming in Mazandaran Province, specifically regarding water and energy consumption. Key conclusions include: The amount of rice produced relative to water and energy consumption is low, indicating substantial resource wastage; Optimization of water and energy use is critical to enhancing nexus efficiency without compromising crop production or food security; Tailored strategies are required to address regional differences and align cropping patterns with local climatic and weather conditions.
To improve WEF nexus efficiency, the following recommendations are proposed:
  1. Agricultural Zoning: Implement zoning strategies based on regional climate and conditions to optimize cropping patterns.
  2. Extension-Education Programs: Develop training initiatives for farmers, focusing on efficient farm management practices.
  3. Demonstration Farms: Promote exemplary farms as models for best practices through demonstration sites, model farms, and farmer field schools.
These measures aim to reduce resource wastage and improve sustainability in rice production while ensuring food security in the region.
Article number: 1
Full-Text [PDF 2611 kb]   (42 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/06/21 | Accepted: 2024/08/6

References
1. اسداله‌پور، علی. (1402). تدوین مدل مطلوب کسب‌وکار در زنجیره ارزش محصول برنج استان مازندران. علوم ترویج و آموزش کشاورزی ایران، 19(1)، 205-191 [DOI:20.1001.1.20081758.1402.19.1.12.2]
2. اعلایی بازکیایی، پویا؛ کامکار، بهنام؛ امیری، ابراهیم؛ کاظمی، حسین و رضایی، مجتبی. (1398). اثر مدیریت آبیاری و تاریخ کاشت بر عملکرد و بهره‌وری آب در برنج (Oryza sativa L). مجله تولید گیاهان زراعی، 12(4) ، 170-157. [DOI:10.22069/ejcp.2020.16513.2231]
3. آمارنامه وزارت جهاد کشاورزی. (1401). گزارش سطح، توليد و عملكرد محصولات زراعي در سال زراعي 1400- 1399. مرکز فناوری اطلاعات و ارتباطات، خرداد 1401.
4. ایران نژاد، اسماعیل؛ محمدی، حسین و برنا، رضا. (1398). تاثیر تغییر آب و هوا بر نیاز آبی برنج در استان مازندران. جغرافیای طبیعی، 12(46)، 14-1.
5. حق‌جو، ریحانه؛ چوبچیان، شهلا؛ مرید، سعید و عباسی، عنایت. (1402). شاخص‌های رویکرد پیوند امنیت آب، غذا و انرژی در بخش کشاورزی: کاربرد تحلیل محتوا. مجلة تحقیقات اقتصاد و توسعه کشاورزی ایران، 54 (1)، 291- 261. [DOI:10.22059/ijaedr.2022.342410.669145]
6. رنجبرملکشاه، طاهره؛ حسینی یکانی، سید علی؛ کشیری کلایی، فاطمه و عبدی رکنی، خدیجه. (1398). کارایی برنج کاران منطقه گهرباران ساری در شرایط عدم قطعیت. نشریه: اقتصاد کشاورزی و توسعه، 27 (105)، 58-35. [DOI:10.30490/aead.2019.91241]
7. سالنامه آماری. (1402). سالنامه آماری مازندران سال 1401. سازمان مدیریریت و برنامه‌ریزی استان مازندران، معاونت آمار و اطلاعات. 104 صفحه.
8. شرکت آب منطقه ای استان مازندران. (1401). خلاصه وضعیت بارندگی و منابع آب استان در سال آبی 1402-1401.
9. علی پور، علی؛ ویسی، هادی؛ دریجانی، فاطمه؛ صباحی، حسین و لیاقتی، هومان. (1393). واکاوی وضعیت مصرف انرژی در کشت بوم‌های رایج برنج در استان‌های مازندران و گیلان: مطالعه موردی شهرستان بابلسر و لاهیجان. کشاورزی بوم شناختی، 4 (2)، 8-1.
10. قربانی، الهام؛ منعم، محمدجواد و واعظ تهرانی، مهسا. (1399). توسعه مدل پیوند آب، انرژی و غذا در سطح شبکه‌های آبیاری بر اساس شاخص‌های کفایت و پایداری آب (مطالعه موردی شبکه آبیاری قزوین). تحقیقات مهندسی سازه‌های آبیاری و زهکشی، 21 (80)، 80-61. [DOI:10.22092/idser.2020.343189.1432]
11. گودرزی، محمدرضا؛ پیریائی، رضا و موسوی، میر رحیم. (1399). درک پیوند آب، انرژی و غذا و مدیریت برای بهره‌وری از منابع آب موجود. آب و خاک، 34 (2)، 268-255. [DOI:10.22067/jsw.v34i2.78589]
12. مردانی نجف آبادی، مصطفی؛ زباری، یاسمین و اوحدی، نسرین. (1400). تعیین کارایی و حد بهینه استفاده از منابع تولید در راستای توسعه پایدار روستایی مورد: برنج کاران مناطق روستایی گتوند. فصلنامه اقتصاد فضا و توسعه روستایی. شماره 3، 226-209. [DOI:20.1001.1.23222131.1401.11.41.11.8]
13. مردانی نجف آبادی، مصطفی؛ میرزایی، عباس و اوحدی، نسرین. (1399). بررسی کارایی انرژی برنج با استفاده از مدل تحلیل پوششی داده‌های فازی بازه‌ای (مطالعه موردی: برنج‌کاران استان گلستان). تحقیقات اقتصاد و توسعه کشاورزی ایران. 51 (4)، 677-661. [DOI:10.22059/ijaedr.2020.283259.668772]
14. مفاخری، صلاح؛ ویسی، هادی؛ خوشبخت، کوروس و نظری، محمد رضا. (1400). ارزیابی پایداری پیوند سیستم‌های آب-انرژی-غذا در محصول‌های کشاورزی (مطالعه موردی شهرستان دهگلان). فصلنامه علوم محیطی، 19(4)، 306-278. [DOI:10.52547/envs.2021.222630.1078]
16. منعم، محمدجواد؛ دلاور، مجید و حسینی، سید معین. (1399). کاربرد و ارزیابی پیوند آب، غذا و انرژی (نکسوس) در مدیریت شبکه‌های آبیاری مطالعه موردی شبکه آبیاری زاینده رود. نشریه آبیاری و زهکشی ایران، 14(1)، 257-285.
17. Aalaee Bazkiaee, P., Kamkar, B., Amiri, E., Kazemi, H., & Rezaei, M. (2020). Effect of irrigation management and planting date on yield and productivity of rice (Oryza sativa L.). Journal of Crop Production, 12(4), 157-170. [DOI:10.22069/ejcp.2020.16513.2231. (in Persian)]
18. Abbott, M., Bazilian, M., Egel, D., & Willis, H. H. (2017). Examining the food-energy-water and conflict nexus. Current Opinion in Chemical Engineering, 18, 55-60. [DOI:10.1016/j.coche.2017.10.002]
20. Alipour, A., Hadi Veisi, H., Darijani,F., Sabahi ,H.,Liaghati, H. (2015). Assessing energy consumption in conventional rice production systems in Mazandaran and Guilan provinces of Iran: A case study in Babolsar and Lahijan. Journal of Agroecology,4(2), 1-8. (in Persian)
21. Ambast, S.K. (2017). Water, Energy and Food Security Nexus: An Indian Perspective. In Gurung, T.R., (ed). Water-Energy-Food Nexus: A Basis for sustainable development in SAARC Region. Dhaka: SAARC Agriculture Centre.
22. Asadollahpour, A. (2023). Development of A Desirable Business Model in the Value Chain of Rice Products in Mazandaran Province. Iranian Agricultural Extension and Education Journal, 19(1), 191-205. [DOI:20.1001.1.20081758.1402.19.1.12.2 (in Persian)]
23. Aydin, U., & Azhgaliyeva, D. (2019). Assessing energy security in the Caspian region: the geopolitical implications to European energy strategy. In Achieving Energy Security in Asia: Diversification, Integration and Policy Implications (pp. 257-290). [DOI:10.1142/9789811204210_0009]
25. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. [DOI:10.1287/mnsc.30.9.1078]
27. Barkat, S., & Smith, Z. A. (2017). The Food‐Water‐Energy Nexus in Modern Rice Cultivation in Bangladesh and Competing Discourses of Rice Research Institutions. Water‐Energy‐Food Nexus: Principles and Practices, 191-205. [DOI:10.1002/9781119243175.ch17]
29. Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D., & Yumkella, K. K. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy policy, 39(12), 7896-7906. [DOI:10.1016/j.enpol.2011.09.039]
31. Bizikova, L., Roy, D., Swanson, D. A., Venema, H. D., and McCandless, M. (2013). The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management. The International Institute for Sustainable Development. Available online at: https://www.iisd.org/system/files/publications/wef_nexus_2013.pdf
32. Cairns, R., & Krzywoszynska, A. (2016). Anatomy of a buzzword: The emergence of 'the water-energy-food nexus' in UK natural resource debates. Environmental Science & Policy, 64, 164-170. https://doi.org/10.1016/j.envsci.2016.07.007 [DOI:10.1016/j.envsci.2016. 07.007]
34. Cesari de Maria, S., Bischetti, G. B., Chiaradia, E. A., Facchi, A., Miniotti, E. F., Rienzner, M., & Gandolfi, C. (2017). The role of water management and environmental factors on field irrigation requirements and water productivity of rice. Irrigation Science, 35, 11-26. [DOI:10.1007/s00271-016-0519-3]
36. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8 [DOI:10.1016/0377-2217(78)90138-8.]
38. Choudhary, K. M., Jat, H. S., Nandal, D. P., Bishnoi, D. K., Sutaliya, J. M., Choudhary, M., & Jat, M. L. (2018). Evaluating alternatives to rice-wheat system in western Indo-Gangetic Plains: crop yields, water productivity and economic profitability. Field Crops Research, 218, 1-10. [DOI:10.1016/j.fcr.2017.12.023]
40. Del Borghi, A., Tacchino, V., Moreschi, L., Matarazzo, A., Gallo, M., & Vazquez, D. A. (2022). Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecological Indicators, 140, 109015. [DOI:10.1016/j.ecolind.2022.109015]
42. D'Odorico, P., Davis, K. F., Rosa, L., Carr, J. A., Chiarelli, D., Dell'Angelo, J., ... & Rulli, M. C. (2018). The global food‐energy‐water nexus. Reviews of geophysics, 56(3), 456-531. [DOI:10.1029/2017RG000591]
44. El Majdoubi, G., & El Ayadi, H. (2024). Analyzing the Water, Energy, and Food Security Nexus Index in Morocco. In BIO Web of Conferences (Vol. 109, p. 01009). EDP Sciences, 1-8. [DOI:10.1051/bioconf/202410901009]
46. Ermoliev, Y., Zagorodny, A. G., Bogdanov, V. L., Ermolieva, T., Havlik, P., Rovenskaya, E., & Obersteiner, M. (2022). Linking distributed optimization models for food, water, and energy security nexus management. Sustainability, 14(3), 1255. [DOI:10.3390/su14031255]
48. Fagodiya , R.K., Singh , A., Singh , R., Rani, SArvind , S.K., Kumar Rai, K., Sheoran , P., Chandra ,P., Yadav, R.K., Sharma P.C. Biswas , A.K., Chaudhari . S.K. (2023). The food-energy-water-carbon nexus of the rice-wheat production system in the western Indo-Gangetic Plain of India: An impact of irrigation system, conservational tillage and residue management. The Science of the Total Environment 860:160428. [DOI:10.1016/j.scitotenv.2022.160428]
50. FAO (2014). The Water-Energy-Food Nexus-A New Approach in Support of Food Security and Sustainable Agriculture. Available online at: http://www.fao.org/3/ bl496e/bl496e.pdf (accessed October 10, 2019).
51. FAOSTAT. (2022). Production - Crops and livestock products. Available in: https://www.fao.org/faostat/en/#compare.
52. Flammini, A., Puri, M., Pluschke, L., & Dubois, O. (2014). Walking the nexus talk: assessing the water-energy-food nexus in the context of the sustainable energy for all initiative. Environment and Natural Resources Management. Working Paper (FAO) eng no. 58.
53. Formiga-Johnsson, R. M., & Britto, A. L. (2020). Water security, metropolitan supply and climate change: some considerations concerning the Rio de Janeiro case. Ambiente & Sociedade, 23, e02071. https://doi.org/10.1590/1809-4422asoc20190207r1vu2020l6td [DOI:10.1590/1809-4422asoc20190207r1vu2020L6TD]
55. Gain, A. K., Giupponi, C., & Benson, D. (2018). The water-energy-food (WEF) security nexus: the policy perspective of Bangladesh. In Sustainability in the Water Energy Food Nexus (pp. 183-198). Routledge. [DOI:10.1080/02508060.2015.1087616]
57. Ghodrati, S., Kargari, N., Farsad, F., Javid, A. H., & H Kani, A. (2022). Nexus Evaluation of Combined Cycle Power Plants based on Water, Energy, and Carbon. Environmental Energy and Economic Research, 6(2), 1-14. [DOI:10.22097/EEER.2021.307212.1223]
58. Ghorbani, E., Monem, M. J., & Vaez Tehrani, M. (2020). Development of Water, Energy and Food Nexus Model in Irrigation Networks Based on Water Adequacy and Stability Indicators (Qazvin Irrigation Network Case Study). Irrigation and Drainage Structures Engineering Research, 21(80), 61-80. [DOI:10.22092/idser.2020.343189.1432. (in Persian)]
59. Giller, K. E., Delaune, T., Silva, J. V., Descheemaeker, K., van de Ven, G., Schut, A. G., & van Ittersum, M. K. (2021). The future of farming: Who will produce our food?. Food Security, 13(5), 1073-1099. https://doi.org/10.1007/s12571-021-01184-6 [DOI:10.1007/s12571-021- 01184-6.]
61. Goodarzi, M., Piryaei, R., & Moosavi, M. (2020). Understanding Water-Food-Energy Nexus and their Management for the Utilization of the Existing Water Resources. Water and Soil, 34(2), 255-268. [DOI:10.22067/jsw.v34i2.78589. (in Persian)]
62. Goodarzi, M., Piryaei, R., & Moosavi, M. (2020). Understanding Water-Food-Energy Nexus and their Management for the Utilization of the Existing Water Resources. Water and Soil, 34(2), 255-268. [DOI:10.22067/jsw.v34i2.78589 (in Persian)]
63. Haghjoo, R., Choobchian, S., Morid, S., & Abbasi, E. (2023). Indicators of water, food and energy security Nexus approach in agriculture: Application of content analysis. Iranian Journal of Agricultural Economics and Development Research, 54(1), 261-291. [DOI:10.22059/ijaedr.2022.342410.669145 (in Persian)]
64. Hanlon, P, R, Madel, K, Olson-Sawyer, K, Rabin and J, Rose. (2013). Food, water and energy: know the nexus. GRACE Communications Foundation, Water and Energy Programs, New York.
65. Hoff, H. (2011). Understanding the nexus: background paper for the Bonn. In 2011 Nexus Conference (Vol. 51), 1-52.
66. Hoseini, S. M., & Delavar, M. (2020). Application and Evaluation of Water, Food and Energy (NEXUS) in Irrigation Networks Management Case Study of Zayandehrud Irrigation Network. Iranian Journal of Irrigation & Drainage, 14(1), 275-285. [DOI:10.1007/s11269-021-02967-4.(in Persian)]
67. Irannejad, E, Mohammadi, H, & Barna, R. (2019). "The effect of climate change on the water requirement of rice in Mazandaran province". Natural Geography, 12(46), 1-14. (in Persian)
68. IRENA. (2015). Renewable Energy in the Water, Energy and Food Nexus. Available online at: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/ 2015/IRENA_Water_Energy_Food_Nexus_2015.pdf (accessed July 3, 2020).
69. Ishfaq, M., Akbar, N., Anjum, S. A., & Anwar-Ijl-Haq, M. (2020). Growth, yield and water productivity of dry direct seeded rice and transplanted aromatic rice under different irrigation management regimes. Journal of Integrative Agriculture, 19(11), 2656-2673. [DOI:10.1016/S2095-3119(19)62876-5]
71. Jat, H. S., Kumar, P., Sutaliya, J. M., Kumar, S., Choudhary, M., Singh, Y., & Jat, M. L. (2019). Conservation agriculture based sustainable intensification of basmati rice-wheat system in North-West India. Archives of Agronomy and Soil Science, 65(10), 1370-1386. [DOI:10.1080/03650340.2019.1566708]
73. Johannes, H. P., Priadi, C. R., Herdiansyah, H., & Novalia, I. (2020). Water footprint saving through organic rice commodity. In AIP Conference Proceedings (Vol. 2255, No. 1). AIP Publishing. [DOI:10.1063/5.0013601]
75. Jones, O and P, Dodds. (2017). Chapter 2 Definitions of energy security. University College London.
76. Kumar, A., Nayak, A. K., Hanjagi, P. S., Kumari, K., Vijayakumar, S., Mohanty, S., & Panneerselvam, P. (2021). Submergence stress in rice: Adaptive mechanisms, coping strategies and future research needs. Environmental and Experimental Botany, 186, 104448. [DOI:10.1016/j.envexpbot.2021.104448]
78. Lazaro, L. L. B., Bellezoni, R. A., Puppim de Oliveira, J. A., Jacobi, P. R., & Giatti, L. L. (2022). Ten years of research on the water-energy-food nexus: An analysis of topics evolution. Frontiers in Water, 4, 859891. https://doi.org/10.3389/frwa.2022.859891 [DOI:10.3389/frwa.2022.859891.]
80. Lazaro, L. L. B., Giatti, L. L., Bermann, C., Giarolla, A., & Ometto, J. (2021). Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model. Renewable and Sustainable Energy Reviews, 149, 111384. [DOI:10.1016/j.rser.2021.111384]
82. Li, M., Zhao, L., Zhang, C., Liu, Y., & Fu, Q. (2022). Optimization of agricultural resources in water-energy-food nexus in complex environment: A perspective on multienergy coordination. Energy Conversion and Management, 258, 115537. [DOI:10.1016/j.enconman.2022.115537]
84. Liu, Y., Jiang, Y., Xu, C., Lyu, J., & Su, Z. (2022). A quantitative analysis framework for water-food-energy nexus in an agricultural watershed using WEAP-MODFLOW. Sustainable Production and Consumption, 31, 693-706. [DOI:10.1016/j.spc.2022.03.032]
86. Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran's socio-economic drought: challenges of a water-bankrupt nation. Iranian studies, 49(6), 997-1016. [DOI:10.1080/00210862.2016.1259286]
88. Mafakheri, S., Veisi, H., Khoshbakht, K., & Nazari, M. R. (2021). Evaluation of water- energy- food nexus in agricultural products of Dehgolan County. Environmental Sciences, 19(4), 287-306. https://doi.org/10.52547/envs.2021.222630.1078 [DOI:10.52547/envs.2021.222630.1078. (in Persian)]
90. Mallareddy, M., Thirumalaikumar, R., Balasubramanian, P., Naseeruddin, R., Nithya, N., Mariadoss, A., & Vijayakumar, S. (2023). Maximizing water use efficiency in rice farming: A comprehensive review of innovative irrigation management technologies. Water, 15(10), 1802. [DOI:10.3390/w15101802]
92. Mardani Najafabadi M, Zebari Y, Ohadi N. (2022). Determining the efficiency and optimal use of production resources in line with sustainable development: a case study of rice farmers in rural areas of Gotvand. serd 2022; 11 (41) :209-226. [DOI:20.1001.1.23222131.1401.11.41.11.8. (in Persian)]
93. Mardani Najafabadi, M., Abdeshahi, A., & Ahani, E. (2023). Determining the eco-efficiency of major crops in selected rigions of Khuzestan province. Journal of Agricultural Economics & Development, 37(3), 271-287. (In Persian with English abstract). [DOI:10.22067/jead.2023.78856.1158]
94. Mardani Najafabadi, M., mirzaei, A., & ohadi, N. (2020). Investigating the Rice Energy Efficiency Using Interval Fuzzy Data Envelopment Analysis Model (Case Study: Rice Farmers in Golestan Province). Iranian Journal of Agricultural Economics and Development Research, 51(4), 661-677. [DOI:10.22059/ijaedr.2020.283259.668772. (in Persian)]
95. Molajou, A., Pouladi, P., & Afshar, A. (2021). Incorporating social system into water-food-energy nexus. Water Resources Management, 35, 4561-4580. [DOI:10.1007/s11269-021-02967-4]
97. Nandan, R., Poonia, S. P., Singh, S. S., Nath, C. P., Kumar, V., Malik, R. K., ... & Hazra, K. K. (2021). Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environmental Science and Pollution Research, 28(1), 246-261. [DOI:10.1007/s11356-020-10395-x]
99. Nazari, B., Liaghat, A., Akbari, M. R., & Keshavarz, M. (2018). Irrigation water management in Iran: Implications for water use efficiency improvement. Agricultural water management, 208, 7-18. [DOI:10.1016/j.agwat.2018.06.003]
101. Nelson, A., Wassmann, R., Sander, B. O., & Palao, L. K. (2015). Climate-determined suitability of the water saving technology" alternate wetting and drying" in rice systems: a scalable methodology demonstrated for a province in the Philippines. PloS one, 10(12), e0145268. [DOI:10.1371/journal.pone.0145268]
103. Ngammuangtueng, P., Jakrawatana, N., Nilsalab, P., & Gheewala, S. H. (2019). Water, energy and food nexus in rice production in Thailand. Sustainability, 11(20), 5852. https://doi.org/10.3390/su11205852 [DOI:10.3390/su11205852.]
105. Nhamo, L., Ndlela, B., Mpandeli, S., & Mabhaudhi, T. (2020). The water-energy-food nexus as an adaptation strategy for achieving sustainable livelihoods at a local level. Sustainability, 12(20), 8582. [DOI:10.3390/su12208582]
107. Nirmala, B., Tuti, M. D., Mahender Kumar, R., Waris, A., Muthuraman, P., Parmar, B., & Vidhan Singh, T. (2021). Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India. Agroecology and Sustainable Food Systems, 45(5), 745-766. [DOI:10.1080/21683565.2020.1868648]
109. Omar, M. E. D., & Nangia, V. (2023). On-farm water energy food carbon-footprint nexus index for quantitative assessment of integrated resources management for wheat farming in Egypt. Water-Energy Nexus, 6, 122-130. [DOI:10.1016/j.wen.2023.09.002]
111. Pahl-Wostl, C. (2017). Pahl-Wostl, C. (2019). Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environmental Science & Policy, 92, 356-367. https://doi.org/10.1016/j.envsci.2017.07.017 [DOI:10.1016/j.envsci.2017.07.017.]
113. Pan, Z., Wang, Y., Zhou, Y., & Wang, Y. (2020). Analysis of the water use efficiency using super-efficiency data envelopment analysis. Applied Water Science, 10(6), 1-11. https://doi.org/10.1007/s13201-020-01223-1 [DOI:10.1007/s13201-020-01223-1.]
115. Park, S. Y., Kim, J. S., Lee, S., & Lee, J. H. (2022). Appraisal of water security in asia: the pentagonal framework for efficient water resource management. Applied Sciences, 12(16), 8307. [DOI:10.3390/app12168307]
117. Purwanto, A., Sušnik, J., Suryadi, F. X., & de Fraiture, C. (2021). Water-energy-food nexus: Critical review, practical applications, and prospects for future research. Sustainability, 13(4), 1919. [DOI:10.3390/su13041919]
119. Ranjbar Malekshah, T., Hosseini-Yekani, S. A., Kashiri Kolaei, F., & Abdi Rokni, K. (2019). Investigating the Efficiency of Rice Producers in Sari Goharbaran Accounting for Uncertainty. Agricultural Economics and Development, 27(1), 35-58. [DOI:10.30490/aead.2019.91241.(in Persian)]
120. Regional Water Company of Mazandaran Province. (2022). Summary of the state of rainfall and water resources of the province in the water year 2021-2023. (in Persian)
121. Senthilkumar, K. (2022). Closing rice yield gaps in Africa requires integration of good agricultural practices. Field Crops Research. 285, https://doi.org/10.1016/j.fcr.2022.108591 [DOI:10.1016/j.fcr.2022.108591.]
123. Senthilkumar, K., Rodenburg, J., Dieng, I., Vandamme, E., Sillo, F. S., Johnson, J. M., & Saito, K. (2020). Quantifying rice yield gaps and their causes in Eastern and Southern Africa. Journal of Agronomy and Crop Science, 206(4), 478-490. [DOI:10.1111/jac.12417]
125. Sikka, A.K. (2021). Conservation Agriculture: Towards Managing the Water-Energy Food Nexus in India. Journal of Agricultural Physics, 21(1), 135-144. ISSN 0973-032X.
126. Singh, R., Singh, A., Sheoran, P., Fagodiya, R. K., Rai, A. K., Chandra, P., & Sharma, P. C. (2022). Energy efficiency and carbon footprints of rice-wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India. Energy, 244, 122655. [DOI:10.1016/j.energy.2021.122655]
128. Skawińska, E., & Zalewski, R. I. (2022). Combining the water-energy-food and food waste-food loss-food security nexuses to reduce resource waste. Energies, 15(16), 5866. [DOI:10.3390/en15165866]
130. Soni, P., Sinha, R., & Perret, S. R. (2018). Energy use and efficiency in selected rice-based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Reports, 4, 554-564. [DOI:10.1016/j.egyr.2018.09.001]
132. Statistics of the Ministry of Agricultural Jihad. (2021). Report on the level, production and performance of crops in the crop year 2019-2020. Information and Communication Technology Center, June 2022. (in Persian)
133. Statistical Yearbook. (2023). Statistical Yearbook of Mazandaran for the year 2022. Mazandaran Province Management and Planning Organization, Deputy for Statistics and Information. 104 pages. (in Persian)
134. Sun, C., Yan, X., & Zhao, L. (2021). Coupling efficiency measurement and spatial correlation characteristic of water-energy-food nexus in China. Resources, Conservation and Recycling, 164, 105151. [DOI:10.1016/j.resconrec.2020.105151]
136. Terrapon-Pfaff, J., T, Fink and S, Lechtenbohmer. (2018). the Water-Energy Nexus in Iran. FRIEDRICH EBERT STIFTUNG. 1-21pp. https://epub.wupperinst.org/frontdoor/deliver/index/docId/7247/file/7247_Water_Energy_Nexus.pdf.
137. Wang, J., & Zhao, T. (2017). Regional energy-environmental performance and investment strategy for China's non-ferrous metals industry: a non-radial DEA based analysis. Journal of cleaner production, 163, 187-201. [DOI:10.1016/j.jclepro.2016.02.020]
139. World Economic Forum (2011). Water Security: The Water-Food-Energy-Climate Nexus. Available online at: http://islandpress.org/water-security (accessed April 5, 2019).
140. Yuan, S., & Peng, S. (2022). Food-energy-emission nexus of rice production in China. Crop and Environment, 1(1), 59-67. [DOI:10.1016/j.crope.2022.03.007]
142. Zampieri, M., Ceglar, A., Manfron, G., Toreti, A., Duveiller, G., Romani, M., & Djurdjevic, V. (2019). Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian case‐study. Land Degradation & Development, 30(17), 2033-2047. [DOI:10.1002/ldr.3402]
144. Zarei, M. (2020). The water-energy-food nexus: A holistic approach for resource security in Iran, Iraq, and Turkey. Water-Energy Nexus, 3, 81-94. [DOI:10.1016/j.wen.2020.05.004]
146. Zhang, L., Ji, Z., Fu, S., Chiu, Y. H., Shi, Z., Jin, C., & Du, X. (2024). Water-energy-food nexus efficiency and its factor analysis in China: A dynamic series-loop DDF model. Journal of Cleaner Production, 436, 140524. [DOI:10.1016/j.jclepro.2023.140524]
148. Zhiznin, S. Z., Timohov, V. M., & Dineva, V. (2020). Energy security: Theoretical interpretations and quantitative evaluation. International Journal of Energy Economics and Policy, 10(2), 390-400. https://doi.org/10.32479/ijeep.8950 [DOI:10.32479/ijeep.8950.]
150. Zuo,X., Zhao, Sh., Cheng, H., Hu, Y., Wang, Sh., Yue, P., Liu, R., Knapp, A. K., Smith, M.D., Yu, Q & Koerner, S.E. (2021). Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Functional Ecology, 35(9) 2119-2132. https://doi.org/10.1111/1365-2435.13875 [DOI:10.1111/1365-2435.13875.]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 |

Designed & Developed by : Yektaweb