Search published articles


Showing 3 results for Oxidation

Reyhaneh Sariri, Adeleh Raeofi Masooleh, Gholam Reza Bakhshi Khaniki,
Volume 2, Issue 4 (3-2016)
Abstract

Tea was planted in Lahijan by Kashefalsataneh in 1930. The main concern about important commercial plants such as tea is the formation of ice crystals in low temperatures. This can damage the live cells leading to lowering the quality of the plant and eventually its death. Formation of reactive oxygen species (ROS) and oxidative stress is the result of various environmental stresses leading to freezing. Investigating the variations in any of these factors could help to understand the mechanism of freeze resistance in ever-green plants. The aim of the present research was to investigate lipid peroxidation, the presence of antifreeze protein and variations in the activity of some antioxidant enzymes, including superoxide dismutase (SOD), ascorbate peroxidize (APX) and catalyse (CAT) in tea leaves subjected to 20, 0, -2, -5 and -8°C in tea leaves from the north of Iran. The results showed formation of an antifreeze protein with MW of about 20 KD in response to cold stress. It was also found that the activity of SOD, APX and CAT increased in tea leaves due to cold stress. The activity of SOD increased down to -8°C. APX and CAT increased their activity down to -5°C. On the other hand, the lipid per oxidation factor, MDA, was also elevated in response to the cold stress.


Mansour Afsharmohammdian, Faezeh Ghanati, Sara Ahmadiani, Kamal Sadrzamani,
Volume 3, Issue 3 (12-2016)
Abstract

Pennyroyal (Mentha pulegium L.) from the Lamiaceae family is a medicinal plant which has great antioxidant properties. Environmental stresses such as drought can result in changes in the activity of antioxidant enzymes and the content of some biochemical factors in plants. In this investigation, the effects of drought stress on the activity of supe-roxide dismutase, ascorbate peroxidase, catalase, peroxidase, malondialdehyde and soluble sugars content in pennyroyal shoots and roots were evaluated. To create the water deficit, 24-day seedlings of pennyroyal were placed in 1/2 strength Hoagland solution, containing PEG 6000 (0 and 5% (w/v)) for 24 hours. The results showed that drought stress incr-eased catalase activity and lipid peroxidation and decreased superoxide dismutase and peroxidase activity of the shoots. On the other hand, the activity of catalase and peroxidase increased in the roots. Ascorbate peroxidase activity showed no significant difference in the shoots and the roots. Moreover, drought stress significantly increased the amount of so-luble sugars of glucose, galactose, xylose and rhamnosus in the shoots. Therefore, the increased activity in antioxidant enzymes as well as the amount of soluble sugars under drought stress might be a sign of tolerance of M. pulegium under low levels of drought.


Dr Nader Chaparzadeh, Dr Leila Zarandi-Miandoab, - Mina Ali-Pashaei Dehkhargani,
Volume 11, Issue 1 (6-2024)
Abstract

Texture quality is an important factor in evaluating of fruits. The cut surfaces of the apple fruit turn brown because of the oxidation of phenolic compounds, triggered by polyphenol oxidase enzyme. Preventing the oxidation of phenolic substances and changing color of fruit are very important in the food industry. Due to the adverse effects of chemical additives on human health and increasing consumer preference for natural alternative compounds makes an interesting market for natural plant ingredients. This study was conducted to investigate the effect of some chemical and natural compounds including sodium metabisulfite, and citric acid, aromatic waters (sweats) of chicory, licorice and lemongrass on polyphenol oxidase enzyme activity of apple fruits. The activity of polyphenol oxidase was evaluated spectrophotometrically using pyrogallol as substrate. The optimum temperature and pH values were 32 °C and 7, respectively. It was found that the enzyme activity decreased due to use of natural compounds, sodium metabisulfite and citric acid. In conclusion, polyphenol oxidase activity can be reduced to prevent of fruits browning by using suitable natural compounds instead of chemicals.

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb