Search published articles


Showing 3 results for Antibacterial Activity

Ali Bahrami, Bita Jenabzadeh, Hamid Mosmeri, Mohammad Davoud Ghafari,
Volume 7, Issue 1 (4-2020)
Abstract

Phenazine 1-corboxylic acid (PCA) is an antibiotic, which inhibits the growth of a vast number of micro-organisms. PCA has has been applied in fields such as pharmaceutical, agricultural, marine and chemical industries. In this study, the antibiotic properties of PCA (produced by pseudomonas aeruginosa MUT.3, which is kept at the Microbial Collection of Malek Ashtar University of Technology) was studied. The impacts of temperature and light conditions on the activity of PCA was investigated within a 230-day period. To investigate the rate of PCA destruction in the experiment, high performance liquid chromatography (HPLC) was utilized. Moreover, the antibacterial activity of PCA under various conditions was studied by minimum inhibitory (MIC) and minimum biocidal concentration (MBC) methods against E. coli DH5α. The results showed that PCA could be active up to 210 days in darkness (at 25oC). Meanwhile, the antibacterial activity of PCA was reduced to 100 and 50 days by increasing the temperature to 35 and 45oC, respectively. In addition, PCA could be active up to 120 and 10 days in visible and ultraviolet light condition, respectively. The MIC and MBC data were consistent with the HPLC results. Detailed data on the activity and stability of phenazine 1-corboxylic acid under various environmental conditions, as presented in this study, could be helpful in industries and healthcare services.
 
 


Sogol Tavanaeian, Javad Hamedi, Setareh Haghighat,
Volume 7, Issue 1 (4-2020)
Abstract

Exopolymers (EPS) are high-molecular-weight polymers secreted by some micro-organisms and have several applications in food, pharmaceutical, packaging and agricultural industries, as well as medicine. Actinobacteria are valuable bacteria in biotechnology and many commercial drugs such as antibiotics, antioxidants and immune-suppressant agents are derived from Actinobacteria. Recently, their other capabilities such as exopolymer production have been taken into consideration. Due to the high potential of actinobacteria in producing various compounds and increased prevalence of infections by antibiotic-resistant pathogens, the aim of the present study was to evaluate the potential of isolated Actinobacteria from various locations of Iran to produce EPS with antimicrobial activity. Appropriate dilutions of the samples were, therefore, cultured in ISP2 medium after treatment. The isolates were primarily identified by morphological tests. Then, their ability to produce EPS was investigated in BHI medium with 5% sucrose. The exopolymers of the most efficient strain were analyzed by UV-visible spectroscopy and FT-IR. Finally, the most efficient isolate was molecularly identified. Of the 120 isolates, 38 were able to produce EPS, and six had significant capability of producing EPS (10-14 g/L) and showed antibiotic activity against Staphylococcus aureus, Bacillus subtilis and Aspergillus niger. The EPS of the strain So49 had high absorbance in 190-230 nm, but did not have absorbance in 260-280 nm. Therefore, it does not have any protein impurity. The EPS has hydroxyl and carboxyl functional groups, according to FT-IR analysis. 16S rRNA gene analysis showed that the most efficient isolate had 99.68% similarity to Promicromonospora xylanilytica. 


 
Bahare Asgari, Dr Ali Mohammadi, Dr Bahare Attaran,
Volume 11, Issue 1 (6-2024)
Abstract

The aim of the present work was to produce a stable nanoemulsion containing clove (Syzygium aromaticum) essential oil (PCLO) and evaluate its antimicrobial activity. The effect of the preparation technique, the type of surfactant and the ratio of surfactant to oil was evaluated to optimize the preparation formula of oil-in-water nanoemulsion. The optimized formula prepared by low energy production method containing 4% w/w PCLO and 12% w/w mixed surfactant (SDS + Tween 80) produced a clear and stable nanoemulsion for 90 days with an average particle diameter below 150 nm. The antibacterial activity of pure PCLO and its nanoemulsions (NCLO) was investigated by disk diffusion, agar well, and broth methods in 3 indicator bacteria of gastrointestinal infections, Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium. Minimum inhibitory concentration (MIC) and bacteriocidal concentration (MBC) as well as dynamic killing time were determined in the tested bacteria. Strong antibacterial activity of PCLO and NCLO was revealed in the concentration range of 1000-2000 ppm. The killing kinetics study showed that during the first 15 minutes of exposure to NCLO at the MIC concentration, there was a rapid and extensive reduction in the amount of viable microorganisms. The presented data, considering the optimal performance of antimicrobial substances in food, cosmetics and chemical industries, can help in the rational design of nanoemulsion-based essential oil delivery systems.
 

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb