Search published articles


Showing 3 results for Ganjeali

Mostafa Sagharyan, Ali Ganjeali, Monireh Cheniany,
Volume 6, Issue 2 (8-2019)
Abstract

Nepeta binaloudensis Jamzad is a medicinal plant endemic to Iran. It is an endangered plant due to habitat destruction and intensive harvest. We investigated the effect of antioxidants and different concentrations of BAP and NAA on in vitro stem and root formation of N. binaloudensis. Stem explants were cultured in ½ MS medium supplemented with BAP (0.5 mg/L) and different concentrations of ascorbic acid and reduced glutathione. The effect of different concentrations of BAP on the regeneration of this plant was then evaluated. Moreover, root formation of regenerated stems was investigated in the ½ MS medium supplemented with different concentrations of NAA. The results showed that the combination of antioxidants in ½ MS medium supplemented with BAP (0.5 mg/L) had a significant effect on regeneration in vitro culture. The reduced-glutathione (2 μM/ L) in comparison with other antioxidant treatments increased the stem regeneration in explants. The levels of BAP hormone (1 and 1.5 mg/L) had a significant (p-value<0.05) effect on the stem regeneration rate and the number of produced branches. The NAA (2 mg/L) increased root formation and root height average. We recommend the use of these treatments for in vitro propagation of this endangered plant.
 
Vajiheh Ganjeali, Monireh Cheniany, Parissa Taheri, Maryam Mazaheri-Tirani,
Volume 10, Issue 1 (6-2023)
Abstract

Wheat (Triticum aestivum L.), as one of the most important cultivated crops in the world and Iran, is constantly threatened by many diseases, including Fusarium contamination. Due to the unique characteristics of nanoparticles, copper oxide nanoparticles show high antibacterial and antifungal properties. The purpose of this research was to comparatively investigate the antifungal effects of copper oxide nanoparticles and its bulk form on the suppression of Fusarium calmorum in wheat. For this purpose, a pot experiment was done with four levels (10, 250, 500, and 1000 mg L-1) of nanoparticles and bulk form of copper oxide treatments in wheat (Roshan cultivar). The results showed that the maximum inhibition of root pathogenicity was observed in a high concentration of nanoparticles as compared to bulk form. The 250 and 500 mg L-1 concentrations of copper oxide nanoparticles caused the highest stem and root length and the highest dry weight of the aerial part and root, respectively. Treatment with 10 and 250 mg L-1 nanoparticles also increased the content of chlorophyll a, total chlorophyll, carotenoid, chlorophyll stability index, membrane stability coefficient, and relative leaf water content. While the content of chlorophyll b, malondialdehyde, hydrogen peroxide, and proline increased with the increasing concentration of both nanoparticle and bulk forms. The results of this research showed that the low and medium concentrations of nanoparticles were more successful in inhibiting the aforementioned fungus than the bulk form.
 
Fatemeh Jafari, Ali Ganjeali, Elham Amjadi,
Volume 10, Issue 4 (3-2024)
Abstract

Nepeta binaludensis jamzad, as a medicinal plant, which is at risk of extinction due to irregular harvesting and damage of its habitat. Four treatments including: 1- inoculation with Azotobacter chooroccum, 2- inoculation with Bacillus cereus and Pseudomonas putida, 3- inoculation with a mix of three bacteria (A. chooroccum + B. cereus + P. putida) and 4 controls (without inoculation), in the form of a completely randomized design with 3 replications in two vegetative growth stages (ten and twenty weeks after sowing). Plant growth-promoting bacteria (PGPB) improved all the evaluated morphological characteristics, including the length and dry weight of the aerial part, total leaf area and root length compared to the control. Also, the results of biochemical investigations showed that in 10 and 20 weeks old plants, the application of PGPB could increase the phenolic and flavonoid compounds and also antioxidant activity. The contain of some elements such as calcium, potassium, phosphorus, iron and magnesium also increased as a result of inoculation with PGPB. Since the PGPB improved the growth and also increased the effective compounds of N. binaludensis plants, they can be introduced as useful bio fertilizers and considered as a good alternative to chemical fertilizers.

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb