Volume 8, Issue 3 (10-2021)                   nbr 2021, 8(3): 233-241 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Veisi M, Koohdar F, Sheidai M. A morphological, anatomical and molecular study of two varieties of Tamarix tetragyna in Iran. nbr 2021; 8 (3) :233-241
URL: http://nbr.khu.ac.ir/article-1-3456-en.html
Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran , Mozhgan_veisi@yahoo.com
Abstract:   (3411 Views)
Tamarix is the largest genus in the family Tamaricaceae with about 54 species. T. tetragyna var. meyeri and T. tetragyna var. deserti were previously reported from Iran. Due to the presence of overlapping features in the previously designed identification keys for the separation of these two varieties, it could be helpful to use other characters and character states derived from other sources, such as anatomical and molecular studies, in addition to find more effective morphological features for the separation of the two varieties. Therefore, the present study aimed to differentiate these two presumed varieties by multiple approaches using morphological, anatomical and molecular data. For morphological study, 6 quantitative and qualitative characters were examined in 12 samples of the two varieties. ANOVA analysis showed a significant difference between the studied characters. For anatomical study, 10 traits were examined in 4 samples of the two varieties, which also showed a significant difference. AMOVA analysis based on molecular studies using Scot marker showed a significant difference between the two varieties. The PCA biplot show the most variable traits in morphological and anatomical studies. For varieties delimitation, different clustering methods were drawn in all three studies. The results of this study showed that the use of appropriate diagnostic traits in morphological and anatomical studies as well as the use of molecular markers can be effective in showing the separated boundaries of the two varieties studied.
 
Full-Text [PDF 1524 kb]   (975 Downloads)    
Type of Study: Original Article | Subject: Plant Biology
Received: 2021/02/24 | Revised: 2021/10/19 | Accepted: 2021/04/26 | Published: 2021/10/19 | ePublished: 2021/10/19

References
1. Assadi, M. 1988. Tamaricaceae, in Assadi, M. et al. (editors), Flora of Iran, vol. 1. Forests and Rangelands Research Institute, Tehran.
2. Arianmanesh, R., Mehregan, I., Assadi, M. & Nejadsattari, T. 2016. Phylogenetic relationships of the genus Tamarix L. (Tamaricaceae) from Iran based on nuclear and plastid DNA sequences. Asian Journal of Conservation Biology 5: 45-50.
3. Arianmanesh, R., Mehregan, I., Assadi, M. & Nejadsattari, T. 2016. Comparative morphology of the genus Tamarix (Tamaricaceae) in Iran. International Letters of Natural Sciences 60: 1-12. [DOI:10.18052/www.scipress.com/ILNS.60.1]
4. ‌Al-Qurainy, F., Khan, S., Nadeem, M. & Tarroum, M. 2015. SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. Pakistan Journal of Botany 47: 637-643.‌
5. Alaimo, M. G., Gargano, M. L., Vizzì, D., & Venturella, G. 2013. Leaf anatomy in Tamarix arborea var. arborea (Tamaricaceae). Plant Biosystems 147: 21-24. [DOI:10.1080/11263504.2012.704888]
6. Baum, B.R. 1967. Introduced and naturalized tamarisks in the United States and Canada (Tamaricaceae). Baileya 15: 19-25.‌ ‌
7. Bretting, P.K. & Widrlechner, M.P. 1995. Genetic markers and horticultural germplasm management. HortScience 30: 1349-1356.‌ [DOI:10.21273/HORTSCI.30.7.1349]
8. Brotherson, J.D. & Winkel, V. 1986. Habitat relationships of saltcedar (Tamarix ramosissima) in central Utah. The Great Basin Naturalist 46: 535-541.‌
9. Brotherson, J.D. & Winkel, V. 1986. Habitat relationships of saltcedar (Tamarix ramosissima) in central Utah. The Great Basin Naturalist 46: 535-541.‌
10. Brown, S.M., Hopkins, M.S., Mitchell, S.E., Senior, M.L., Wang, T.Y., Duncan, R.R., Gonzalez-Candelas, F. & Kresovich, S. 1996. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theoretical and Applied Genetics 93: 190-198.‌ [DOI:10.1007/BF00225745]
11. ‌Collard, B.C. & Mackill, D.J. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter 27: 86-93.‌ [DOI:10.1007/s11105-008-0060-5]
12. Daoyuan, Z., Dunyan, T., Juan, Z. & Borong, P. 2003. Comparative anatomy of young branches of 16 species of Tamarix from China with reference to their ecological significance. Acta Botanica Yunnanica 25: 653-662.‌
13. Gaskin, J.F. 2003. Tamaricaceae. In flowering plants. Dicotyledons 5: 363-368. [DOI:10.1007/978-3-662-07255-4_42]
14. Gaskin, J.F., & Schaal, B.A. 2003. Molecular phylogenetic investigation of US invasive Tamarix. Systematic Botany 28: 86-95.‌
15. Gaskin, J.F., Ghahremaninejad, F., Zhang, D.-Y. & Londo, J.P. 2004. A systematic overview of Frankeniaceae and Tamaricaceae from nuclear rDNA and plastid sequence data. Annales of the Missouri Botanical Garden 91: 401-409.
16. Gaskin, J.F. & Kazmer, D.J. 2009. Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biological Invasions 11: 1121-1130. [DOI:10.1007/s10530-008-9384-1]
17. Ghahremaninejad, F., Ataei, N. & Nejad Falatoury, A. 2017. Comparison of angiosperm flora of Afghanistan and Iran in accordance with APG IV system. Nova Biologica Reperta 4: 73-97. [DOI:10.21859/acadpub.nbr.4.1.74]
18. Hammer, O., Harper, D. & Ryan, P.D. 2012. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4: 1-9.‌
19. Ijbari, H., Sheidai, M., Mehrabian, A.R., Noormohammadi, Z. & Ghasemzadeh-Baraki, S. 2014. K-means clustering and structure analyses of genetic diversity in Tamarix L. accessions. Turkish Journal of Botany 38: 1080-1094. ‌ [DOI:10.3906/bot-1401-97]
20. Jensen, W.A. 1962. Botanical histochemistry. W.H.H. Freeman and Company, San Francisco and London.‌
21. Križman, M., Jakše, J., Baričevič, D., Javornik, B. & Prošek, M. 2006. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agriculturae Slovenica 87: 427-433.‌
22. Marefatyan, S., Sheidai, M., koohdar, F. & Veisi, M. New subspecies within Tamarix ramossissma (Tamaricaceae) genetic and morphological evidence for publication. Genetica. in press.
23. Nawwar, M.A. & Hussein, S.A. 1994. Gall polyphenolics of Tamarix aphylla. Phytochemistry 36: 1035-1037. ‌ [DOI:10.1016/S0031-9422(00)90486-2]
24. Olson, M.E., Gaskin, J.F. & Ghahremaninejad, F. 2003. Stem anatomy is congruent with molecular phylogenies placing Hypericopsis persica in Frankenia (Frankeniaceae), comments on vasicentric tracheids. Taxon 52: 525-533. [DOI:10.2307/3647451]
25. Peakall, R.O.D. & Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288-295.‌ [DOI:10.1111/j.1471-8286.2005.01155.x]
26. Peiyou, H. & Rui-ru, G. 2004. Research on the extension of Tamarix shrubs resulted from development projects in arid area. Journal of Forestry Research 15: 45-48.‌ [DOI:10.1007/BF02858009]
27. Podani, J. 2000. Introduction to the exploration of multivariate biological data. Backhuys Publishers.‌
28. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225-238.‌ [DOI:10.1007/BF00564200]
29. POWO. 2021. Plants of the World Online. Facilitated by the Roayal Botanic Gardens, Kew. http://www. plants of the world online.org (accessed 17 May 2021).
30. Sawant, S.V., Singh, P.K., Gupta, S.K., Madnala, R. & Tuli, R. 1999. Conserved nucleotide sequences in highly expressed genes in plants. Journal of Genetics 78: 123-131. [DOI:10.1007/BF02924562]
31. Saidana, D., Mahjoub, M.A., Boussaada, O., Chriaa, J., Chéraif, I., Daami, M., Mighri, Z. & Helal, A.N. 2008. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiological Research 163: 445-455. [DOI:10.1016/j.micres.2006.07.009]
32. Schiman & Czeika, H. 1964. Tamaricaceae, in Rechinger, K.H. (editor). Flora Iranica vol. 4. Akademische Druck- u. Verlagsanstalt, Graz-Austria, pp 1-17.
33. Sheidai, M., Mirshekari, R., Koohdar, F., Ijbari, H. & Ghasemzadeh-Barakai, S. 2019. Biosystematic study in some Tamarix species in Iran. Genetika 51: 845-860.‌ [DOI:10.2298/GENSR1903845S]
34. Sheidai, M., Shagholi, T., Keshavarzi, M., Koohdar, F. & Ijbari, H. 2019. Species delimitation and inter-specific gene flow in Tamarix L. (Tamaricaceae). Hacquetia 18: 313-322. [DOI:10.2478/hacq-2019-0001]
35. Sheidai, M., Teymoori, H., Noormohammadi, Z., Mehrabian, A.R., Koohdar, F. & Ghasemzadeh-Baraki, S. 2018. Species delimitation in the genus Tamarix: morphological and molecular data. Phytotaxa 343: 101-115.‌ [DOI:10.11646/phytotaxa.343.2.1]
36. Sheidai, M., Zanganeh, S., Haji-Ramezanali, R., Nouroozi, M., Noormohammadi, Z. & Ghsemzadeh-Baraki, S. 2013. Genetic diversity and population structure in four Cirsium (Asteraceae) species. Biologia 68: 384-397.‌ [DOI:10.2478/s11756-013-0162-x]
37. Sheidai, M., Noormohamadi, Z. & Sotodeh, M. 2006. Cytogenetic variability in several canola (Brassica napus) cultivar. Caryologia 59: 267-276.‌ [DOI:10.1080/00087114.2006.10797925]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb