دوره 6، شماره 1 - ( 2-1398 )                   جلد 6 شماره 1 صفحات 78-70 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khezri M. Effects of biofilm formation in bacteria from different perspectives . nbr 2019; 6 (1) :70-78
URL: http://nbr.khu.ac.ir/article-1-3044-fa.html
خضری مریم. اثرات تشکیل بیوفیلم در باکتری ها از دیدگاه های مختلف. یافته‌ های نوین در علوم زیستی. 1398; 6 (1) :70-78

URL: http://nbr.khu.ac.ir/article-1-3044-fa.html


دانشگاه ارومیه ، ma_khezri@yahoo.com
چکیده:   (6711 مشاهده)
اجتماعات باکتریایی قادر به تشکیل ساختارهای پیچیده و سه ­بعدی بیوفیلم هستند. تشکیل بیوفیلم جزء باستانی و جدایی ­ناپذیر چرخه زندگی پروکاریوت ­ها و عامل کلیدی بقا آنها در زیستگاه­ های اکولوژیکی مختلف است. در بیوفیلم، باکتری ­ها از حالت سلول آزاد و شناور به­ صورت ساکن درمی­ آیند. حضور در بیوفیلم موجب بروز صفات جدیدی در باکتری­ ها م ی­شود که آن ها را از سلول­ های آزاد متمایز می ­کند. مقاومت زیاد در برابر تیمارهای ضدمیکروبی و کمبود اکسیژن نتیجه حضور باکتری در بیوفیلم است. بیوفیلم ­ها در پاسخ به سیگنال­ های مختلف محیطی تشکیل می شوند و ژن­ های زیادی در تولید آنها دخالت دارند. بیوفیلم می ­تواند درون لوله­ های انتقال مایعات، روی وسایل و دستگاه­ های مورد استفاده در پزشکی، همچنین اعضا مصنوعی کاشته شده در بدن بیماران مشکل­ ساز باشد اما می ­توان از وجود بیوفیلم­ ها در جهت اهداف سودمند مانند پاکسازی آب فاضلاب­ های صنعتی و کشاورزی، تجزیه زیستی فلزات سنگین و فیلترهای زیستی آلودگی­ های هوا استفاده کرد. توانایی تولید بیوفیلم در باکتری­ های بیماری­زا، مزیتی برای حفظ و بقا آن­ها در شرایط نامساعد محسوب می ­شود و مشکلات زیادی در راه حذف آنها ایجاد می­ کند، زیرا باکتری­ های موجود در بیوفیلم معمولا در برابر آنتی­ بیوتیک ­ها و سموم شیمیایی مقاومت بالاتری نسبت به سلول­ های آزاد نشان می­ دهند. در ریزوباکتری­ های مفید گیاهی که جهت مهار زیستی بیماری های گیاهی یا افزایش رشد و بهبود کیفیت محصولات کشاورزی استفاده می ­شوند، توانایی تولید بیوفیلم به ­ویژه در فرایند تولید انبوه و تجاری ­سازی آنها به ­مثابۀ یک مزیت مطرح است. با توجه به اهمیت بیوفیلم باکتریایی در زندگی انسان، این نوشتار به اهمیت بیوفیلم از جنبه­ های مختلف می ­پردازد.
 

 
متن کامل [PDF 951 kb]   (3152 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: میکروبیولوژی
دریافت: 1396/10/12 | ویرایش نهایی: 1398/2/16 | پذیرش: 1397/2/4 | انتشار: 1397/2/19 | انتشار الکترونیک: 1397/2/19

فهرست منابع
1. Abee, T., Kovacs, A.T., Kuipers, O.P. and Van der Veen, S. 2011. Biofilm formation and dispersal in Gram-positive bacteria. - Curr. Opin. Biotech. 22: 172-179. [DOI:10.1016/j.copbio.2010.10.016]
2. Ahmadzadeh, M. 2013. Biological control of plant diseases, plant probiotic bacteria. - University of Tehran Press, pp: 479.
3. Anand, S., Singh, D., Avadhanula, M. and Marka, S. 2014. Development and control of bacterial biofilms on dairy processing membranes. - Compr. Rev. Food Sci. F. 13: 18-33. [DOI:10.1111/1541-4337.12048]
4. Bais, H.P., Fall, R. and Vivanco, J.M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. - Plant Physiol. 134: 307-319. [DOI:10.1104/pp.103.028712]
5. Barahona, E., Navazo, A., Martinez-Granero, F., Zea-Bonilla, T., Perez-Jimenez, R.M., Martin, M. and Rivilla, R. 2011. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. - Appl. Environ. Microb. 77: 5412-5419. [DOI:10.1128/AEM.00320-11]
6. Barahona, E., Navazo, A., Yousef-Coronado, F., Aguirre de Carcer, D., Martinez-Granero, F., Espinosa-Urgel, M., Martin, M. and Rivilla, R. 2010. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. - Environ. Microbiol. 12: 3185-3195. [DOI:10.1111/j.1462-2920.2010.02291.x]
7. Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M. and Nicot, P.C. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? - Front. Plant Sci. 6: 566, doi: 10.3389/fpls.2015.00566. [DOI:10.3389/fpls.2015.00566]
8. Bedran, T.B.L., Azelmat, J., Spolidorio, D.P. and Grenier, D. 2013. Fibrinogen-induced streptococcus mutans biofilm formation and adherence to endothelial cells. - BioMed Res. Int. doi: 10.1155/2013/431465. [DOI:10.1155/2013/431465]
9. Boyd, C.D., Smith, T.J., El-Kirat-Chatel, S., Newell, P.D., Dufrêne, Y.F. and O'Toole, G.A. 2014. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation and cell surface localization. - J. Bacteriol. 196: 2775-2788. [DOI:10.1128/JB.01629-14]
10. Buttner, H., Mack, D. and Rohde, H. 2015. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. - Front. Cell. Infect. Mi. 5: 14, doi: 10.3389/fcimb.2015.00014. [DOI:10.3389/fcimb.2015.00014]
11. Carvalhais, L.C., Dennis, P.G., Fedoseyenko, D., Hajirezaei, M.R., Borriss, R. and Von Wiren, N. 2011. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. - J. Plant Nutr. Soil Sc. 174: 3-11. [DOI:10.1002/jpln.201000085]
12. Cercado, B., Auria, R., Cardenas, B. and Revah, S. 2012. Characterization of artificially dried biofilms for air biofiltration studies. - J. Environ. Sci. Heal. A. 47: 940-948. [DOI:10.1080/10934529.2012.667292]
13. Danhorn, T. and Fuqua, C. 2007. Biofilm formation by plant-associated bacteria. - Annu. Rev. Microbiol. 61: 40-422. [DOI:10.1146/annurev.micro.61.080706.093316]
14. Das, N., Geetanjali Basak, L.V., Abdul Salam, J. and Abigail, M.E.A. 2012. Application of biofilms on remediation of pollutants- an overview. - J. Microbiol. Biotech. Res. 2: 783-790.
15. De Vos, E.M. 2015. Microbial biofilms and the human intestinal microbiome. - N. P. J. Biofilms and Micro- biomes. 1: 15005, doi:10.1038/npjbiofilms.2015.5. [DOI:10.1038/npjbiofilms.2015.5]
16. Edwards, S.J. and Kjellerup, B.V. 2013. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. - Appl. Microbiol. Biot. 79: 9909-9921. [DOI:10.1007/s00253-013-5216-z]
17. Fan, B., Borriss, R., Bleiss, W. and Wu, X. 2012. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. - J. Microbiol. 50: 38-44. [DOI:10.1007/s12275-012-1439-4]
18. Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A. and Kjelleberg, S. 2016. Biofilms: an emergent form of bacterial life. - Nat. Microbiol. 14: 563, doi:10.1038/nrmicro.2016.94. [DOI:10.1038/nrmicro.2016.94]
19. Flemming, H.C. and Wingender, J. 2010. The biofilm matrix. - Nat. Rev. Microbiol. 8: 623-633. [DOI:10.1038/nrmicro2415]
20. Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Nakaguchi, Y., Nishibuchi, M. and Son, R. 2013. Efficiency of four Malaysian commercial disinfectants on removing Listeria monocytogenes biofilm. - Int. Food Res. J. 20: 1485-1490.
21. Ghods, S., Sims, I.M., Moradali, M.F. and Rehm, B.H.A. 2015. Plant pathogen Pseudomonas syringae pv. actinidiae forms biofilms composed of a novel exopolysaccharide: Growth control by bactericidal compounds. - Appl. Environ. Microbiol. 81: 4026-4036. [DOI:10.1128/AEM.00194-15]
22. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J. and He, Y. 2010. Bioremediation of heavy metals by growing hyper accumulator endophytic bacterium Bacillus sp. L14. - Bioresource Technol. 101: 8599-8605. [DOI:10.1016/j.biortech.2010.06.085]
23. Hiriart-Baer, V.P., Fortin, C., Lee, D.Y. and Campbell P.G. 2006. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: Influence of thiosulphate. - Aquat. Toxicol. 78: 136-148. [DOI:10.1016/j.aquatox.2006.02.027]
24. Hofmann, A., Fischer, D., Hartmann, A. and Schmid, M. 2014. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production. - Front. Microbiol. 5:191, doi: 10.3389/fmicb.2014.00191. [DOI:10.3389/fmicb.2014.00191]
25. Jamil, B., Hasan, F., Hameed, A. and Ahmed, S. 2007. Isolation of Bacillus subtilis MH-4 from soil and its potential of polypeptidic antibiotic production. - Pak. J. Pharm. Sci. 20: 26-31.
26. Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N. and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. - Mol. Plant-Microbe Int. 19: 250-256. [DOI:10.1094/MPMI-19-0250]
27. Kang, C.H., Kwon, Y.J. and So, J.S. 2016. Bioremediation of heavy metals by using bacterial mixtures. - Ecol. Eng. 89: 64-69. [DOI:10.1016/j.ecoleng.2016.01.023]
28. Kearns, D.B. 2008. Division of labour during Bacillus subtilis biofilm formation. - Mol. Microbiol. 67: 229-231. [DOI:10.1111/j.1365-2958.2007.06053.x]
29. Khelissa, S.O., Abdallah, M., Jama, C., Faille, C. and Chihib, N.E. 2017. Bacterial contamination and biofilm formation on abiotic surfaces and strategies to overcome their persistence. - J. Mate. Environ. Sci. 8: 3326-3346.
30. Khezri, M., Ahmadzadeh, M., Salehi Jouzani, Gh., Behboudi, K., Ahangaran, A., Mousivand, M. and Rahimian, H. 2011. Characterization of some biofilm-forming Bacillus subtilis and evaluation of their biocontrol potential against Fusarium culmorum. - J. Plant Pathol. 93: 373-382.
31. Khezri, M. 2015. Biofilm formation in probiotic bacterium Bacillus subtilis. - Plant Pathol. Sci. 5: 52-62.
32. Khezri, M. 2016. Influence of some environmental and nutritional conditions on biofilm formation of probiotic Bacillus subtilis strains. - Biol. Cont. Pes. Plant Dis. 4: 157-165.
33. Khezri, M., Ahmadzadeh, M. and Salehi-Jouzani, Gh. 2016a. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis. - Braz. J. Microbiol. 47: 47-54. [DOI:10.1016/j.bjm.2015.11.019]
34. Khezri, M., Ahmadzadeh, M., Salehi Jouzani, Gh. and Sharifi, R. 2016b. A new gene involving in biofilm formation of Bacillus subtilis. - Mod. Genet. J. 11: 245-259.
35. Khezri, M. 2017. Effect of biofilm by plant probiotic rhizobacteria on root colonization and growth of wheat. - Biol. Cont. Pes. Plant Dis. 6: 93-102.
36. Kobayashi, K. 2007. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. - J. Bacteriol. 189: 4920-4931. [DOI:10.1128/JB.00157-07]
37. Koczan, J.M., McGrath, M.J., Zhao, Y. and Sundin, G.W. 2009. Contribution of Erwinia amylovora exop-olysaccharides amylovoran and levan to biofilm form-ation: implications in pathogenicity. - Phytopathology. 99: 1237-1244. [DOI:10.1094/PHYTO-99-11-1237]
38. Kong, H.G., Kim, N.H., Lee, S.Y. and Lee, S.W. 2016. Impact of a recombinant biocontrol bacterium, Pseudomonas fluorescens pc78, on microbial commu- nity in tomato rhizosphere. - Plant Pathol. J. 32: 136-144. [DOI:10.5423/PPJ.OA.08.2015.0172]
39. Kroupitski, Y., Golberg, D., Belausov, E., Pinto, R., Swartzberg, D., Granot, D. and Sela, S. 2009. Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. - Appl. Environ. Microbiol. 75: 6076-6086. [DOI:10.1128/AEM.01084-09]
40. Li, Y.H. and Tian, X. 2012. Quorum sensing and bacterial social interactions in biofilms. - Sensors 12: 2519-2538. [DOI:10.3390/s120302519]
41. Madsen, J.S., Burmolle, M., Hansen, H.L. and Sorensen, S.J. 2012. The interconnection between biofilm formation and horizontal gene transfer. - FEMS Immun. Med. Mic. 65: 183-195. [DOI:10.1111/j.1574-695X.2012.00960.x]
42. Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. 2012. Biofilm form- ation in milk production and processing environments; influence on milk quality and safety. - Compr. Rev. Food Sci. F. 11: 133-147. [DOI:10.1111/j.1541-4337.2011.00183.x]
43. Meliani, A. and Bensoltane, A. 2015. Review of Pseudomonas attachment and biofilm formation in food industry. - Poult. Fish. Wild. Sci. 3: 1, doi:10.4172/2375-446X.1000126. [DOI:10.4172/2375-446X.1000126]
44. Mhatre, E., Monterrosa, R.G. and Kovacs, A.T. 2014. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. - J. Basic Microb. 54: 616-632. [DOI:10.1002/jobm.201400175]
45. Mohite, B.V., Jalgaonwala, R.E., Pawar, S. and Morankar, A. 2010. Isolation and characterization of phenol degrading bacteria from oil contaminated soil. - Inn. Rom. Food Biotech. 7: 61-65.
46. Morikawa, M. 2006. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. - J. Biosci. Bioeng. 101(1): 1-8. [DOI:10.1263/jbb.101.1]
47. Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R. and Achbani, E.H. 2017. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. - Int. J. Environ. Agri. Biotech. 2: 590-596. [DOI:10.22161/ijeab/2.2.5]
48. Niu, D., Xia, J., Jiang, C., Qi, B., Ling, X., Lin, S., Zhang, W., Guo, J., Jin, H. and Zhao, H. 2016. Bacillus cereus AR156 primes induced systemic resistance by suppressing miR825/825* and activating defense-related genes in Arabidopsis. - J. Integr. Plant Biol. 58: 426-439. [DOI:10.1111/jipb.12446]
49. O'Toole, G.A. and Kolter, R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple convergent signaling pathways: a genetic analysis. - Mol. Microbiol. 28: 449-461. [DOI:10.1046/j.1365-2958.1998.00797.x]
50. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. - Environ. Microbiol. 9: 1084-1090. [DOI:10.1111/j.1462-2920.2006.01202.x]
51. Prigent-Combaret, C., Vidal, O., Dorel, C. and Lejeune, P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. - J. Bacteriol. 181: 5993-6002.
52. Ramey, B.E., Koutsoudis, M., von Bodman, S.B. and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. - Curr. Opin. Microbiol. 7: 602-609. [DOI:10.1016/j.mib.2004.10.014]
53. Santhanam, R., Luu, V.T., Weinhold, A., Goldberg, J., Oh, Y. and Baldwin, I.T. 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. - PNAS. 112: 36. doi: 10.1073/pnas.1505765112. [DOI:10.1073/pnas.1505765112]
54. Shirtliff, M.E. and Leid, J. 2009. The role of biofilms in device-related infections. - Springer Series in Biofilm. doi: 10.1007/978-3-540-68119-9. [DOI:10.1007/978-3-540-68119-9]
55. Smith, A.L., Skerlos, S.J. and Raskin, L. 2015. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment. - Microb. Biothecnol. 8: 883-894. [DOI:10.1111/1751-7915.12311]
56. Tancos, M.A., Chalupowicz, L., Barash, I. and Manulis-Sasson, S. 2013. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. - Appl. Environ. Microbiol. 79: 6948-6957. [DOI:10.1128/AEM.02495-13]
57. Unosson, E. 2015. Antibacterial strategies for titanium biomaterials. Doctoral Thesis. - Acta Universitatis Upsaliensis, Uppsala, Sweden. pp: 72.
58. Vijay kumar, K., Sridevi, V., Harsha, N., Chandana lakshmi, M.V.V. and Rani, K. 2013. Biofiltration and its application in treatment of air and water pollutants-A review. - IJAIEM 2: 226-231.
59. Wendt, C., Ives, R., Hoyt, A.L., Conrad, K.E., Longstaff, S., Kuennen, R.W. and Rose, J.B. 2015. Microbial removals by a novel biofilter water treatment system. - Am. J. Trop. Med. Hyg. 92: 765-772. [DOI:10.4269/ajtmh.14-0001]
60. Wu, H., Moser, C., Wang, H.Z., Hoiby, N. and Song, Z.J. 2015. Strategies for combating bacterial biofilm infections. - Int. J. Oral Sci. 7: 1-7. [DOI:10.1038/ijos.2014.65]
61. Yao, J. and Allen, C. 2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. - J. Bacteriol. 189: 6415-6424. [DOI:10.1128/JB.00398-07]
62. Yi, H.S., Ahn, Y.R., Song, G.C., Ghim, S.Y., Lee, S., Lee, G., Ryu, C.M. and Song, G.C. 2016. Impact of a bacterial volatile 2, 3-butanediol on Bacillus subtilis rhizosphere robustness. - Front. Microbiol. 7: 993, doi: 10.3389/fmicb.2016.00993. [DOI:10.3389/fmicb.2016.00993]
63. Zeriouh, Z., de Vicente, A., Perez-Garcia, A. and Romero, D. 2014. Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity. - Environ. Microbiol. 16: 2196-2211. [DOI:10.1111/1462-2920.12271]
64. Zhao, Y., Selvaraj, J.N., Xing, F., Zhou, L., Wang, Y., Song, Y., Tan, X., Sun, L., Sangare, L., Folly, Y.M.E. and Liu, Y. 2014. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. - PLOS ONE 9: 92486, doi:10.1371/journal.pone.0092486. [DOI:10.1371/journal.pone.0092486]
65. Zijnge, V., van Leeuwen, M.B.M., Degener, J.E., Abbas, F., Thurnheer, T., Gmur, R. and Harmsen, H.J.M. 2010. Oral biofilm architecture on natural teeth. - PLOS ONE 5: 9321, doi:10.1371/journal.pone.0009321. [DOI:10.1371/journal.pone.0009321]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb