Volume 4, Issue 3 (12-2017)                   nbr 2017, 4(3): 281-287 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teymouri S A, Salati A P, Movahedinia A, Pasha Zanoosi H, Hasanpour S. Effects of dietary oxidized fish oil on thyroid hormones in Sturgeon hybrid . nbr 2017; 4 (3) :281-287
URL: http://nbr.khu.ac.ir/article-1-3018-en.html
Khorramshahr University of Marine Science and Technology
Abstract:   (5563 Views)
Fish oil in the diet of fish is constantly at the risk of oxidation. In this study, the effects of feeding sturgeon hybrid (Huso huso ♂ ×Acipenser ruthenus ♀) with different levels of oxidized fish oil (OFO) on thyroid hormones were investigated. Three experimental diets were made by replacing 0 (control), 50 and 100% OFO were made. Ninety hybrid sturgeon, with the initial weights of 212.6 ± 07g were distributed in 9 fiberglass tanks (2 m3) randomly after 2 weeks of adaptation with experimental conditions. Feeding was performed three times daily (08:00, 14:00 and 20:00) for 6 weeks for satisfaction. At the end of the period, blood samples were taken and their serum was separated. Serum thyroxine and triiodotyronine were measured by radioimmunoassay in blood samples. Serum thyroxine, triiodotyronine and thyroxine/triiodotyronine level showed no significant change related to dietary OFO. Our findings showed that dietary-oxidized oil had no effect on blood thyroid hormones levels.
Full-Text [PDF 242 kb]   (1630 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/12/9 | Revised: 2018/01/4 | Accepted: 2017/12/9 | Published: 2017/12/9 | ePublished: 2017/12/9

References
1. Alijani Ardeshir, R., Rastgar, S., Movahedinia, A., Yarahmadi, Z. 2016. Alterations in the plasma thyroid and cortisol hormones in Yellowfin Sea bream, Acanthopagrus latus, following exposure to Benzo(α)Pyrene. – Pollut. 2: 77-82.
2. Borsting, C.F., Engberg, R.M., Jakobsen, K., Jensen, S.K. and Andersen, J.O. 1994. Inclusion of oxid-ized fish oil in mink diets: the influence on nutrient digestibility and fatty-acid accumulation in tissues. – J. Anim. Physiol. Anim. Nut. 72: 132-145.
3. Burtsev, I.A. 1972. Progeny of an intergeneric hybrid of beluga and sterlet. In Genetics, selection and hybridization (Sobel, Y., ed.). – Keter Press, pp 211-220.
4. Chen, Z., Guo, L., Amarnath, V. and Davies, S. 2012. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxi-dation. – Free Radic. Biol. Med. 53: 1226-1238.
5. Corcos Benedetti, P., Di Aquino, M., Di Felice, M., Gentili, V., Tagliamonte, B. and Tomassi, G. 1987. Effects of a fraction of thermally oxidized soy bean oil on growing rats. – Nut. Rep. Int. 36: 387-401.
6. Eder, K. and Kirchgessner, M. 1997. Zinc deficiency and vitamin E status in rats fed olive oil or linseed oil. – Anim. Physiol. Anim. Nutr. 77: 66-76.
7. Eder, K. 1999. The effect of an oxidized dietary oil on plasma cholesterol and thyroid hormone concen-trations in miniature pigs fed on a hyperlipidemic diet. – Anim. Physiol. Anim. Nut. 82: 271-281.
8. Eder, K. and Stangle, G.I. 2000. Plasma thyroxine and cholesterol concentrations of miniature pigs are in-fluenced by thermally oxidized dietary lipids. – J. Nutr. 130: 116-121.
9. Engberg, R.M., Lauridsen, C., Jensen, S.K. and Jaco-bsen, K. 1996. Inclusion of oxidized vegetable oil in broiler diets: its influence on nutrient balanceand the antioxidant status of broilers. – Poult. Sci. 75: 1003-1011.
10. Field, F.J., Albright, E. and Mathur, S.N. 1986. The effect of hypothyroidism andthyroxine replacement on hepatic and intestinal HMG-CoA reductase and ACAT activities and biliary lipids in the rat. – Metab. 35: 1085-1089.
11. Gupta, R.P., Verma, P.C. and Garg, S.L. 1997. Effect of experimental Zinc deficiency on thyroid gland in Guinea-Pigs. – Ann. Nutr. Metab. 41: 376-381.
12. Hamre, K., Kolas, K., Sandnes, K., Julshamn, K. and Kiessling, A. 2001. Feed intake and absorption of lipid oxidation products in Atlantic salmon (Salmo salar) fed diets coated with oxidized fish oil. – Fish Physiol. Biochem. 25: 209-219.
13. Hasanpour, S., Salati, A.P., Falahatkar, B. and Mohammadi Azarm, H. 2016. Effects of dietary oxidized fish oil on growth and lipid metabolism in hybrid sturgeon (Huso huso ♂×Acipenser ruthenus ♀). – J. Mar. Sci. Technol. 15: 78-88.
14. Howell, B.R., Day, O.J., Ellis. T. and Baynes, S.M. 1998. Early life stages of farmed fish. In: Black, K.D., Pickering, A.D. (eds.) Biology of farmed fish. – Sheffield Academic Press, Sheffield, pp 27- 66.
15. Karalazos. V. 2007. Sustainable alternative to fish meal and fish oil in fish nutrition: effects on growth, tissue fatty acid composition and lipid metabolism. – Ph.D Thesis. Institute of Aquacu-lture, University of Stirling, Scotland, pp 205.
16. Katzeff, H.L., Yang, M.U., Presta. E., Leibel. R., Hirsh. J. and Van Itallie. T. 1990. Calorie restri-ction and iopanoic effects of thyroid hormone me-tabolism. – Am. J. Clin. Nutr. 52: 263- 266.
17. Koshio, S., Ackman, R.G. and Lall, S.P. 1994. Effe-cts of oxidized herring and canola oils in diets on growth, survival, and flavor of Atlantic salmon, (Salmo salar). – J. Agric. Food Chem. 42: 1164-1169.
18. Lall, S.P. 2000. Nutrition and health of fish. In: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M. Olvera-Novoa, M.A. and Civera-Cerecedo, R. 2000. Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19-22 Noviembre,
19. Lewis-McCrea, L.M. and Lall, S.P. 2007. Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnorm-alities in juvenile Atlantic halibut (Hippoglossus hippoglossus). – Aquaculture 262: 142-155.
20. Nasopoulou, C. and Zabetakis. I. 2012. Benefits of fish oil replacement by plant originated oils in compounded fish feeds, a review. – LWT-Food Sci. Technol. 47: 217-224.
21. Tanis, B.C., Westendorp, G.J. and Smelt, H.M. 1996. Effect of thyroid substitution on hypochol-esterolemia in patients with subclinical hypothyr-oidism: a reanalysis of intervention studies. – Clin. Endocrinol. 44: 643-649.
22. Takeuchi, H., Matuso, T., Tokuyama, K., Shimom-ura, Y. and Suzuki, M. 1995. Diet induced ther-mosgenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a saff-lower oil diet or a linseed oil diet. – J. Nutr. 125: 920-925.
23. Watanabe, T. 1981. Lipid nutrition in fish. – Comp. Biochem. Physiol. 73B: 3-15.
24. Yoshida. H. and Kajimoto. G. 1989. Effect of dietary vitamin E on the toxicity of autoxidized oil to Rats. – Ann. Nut. Metab. 33: 153-161.
26. Alijani Ardeshir, R., Rastgar, S., Movahedinia, A., Yarahmadi, Z. 2016. Alterations in the plasma thyroid and cortisol hormones in Yellowfin Sea bream, Acanthopagrus latus, following exposure to Benzo(α)Pyrene. – Pollut. 2: 77-82.
27. Borsting, C.F., Engberg, R.M., Jakobsen, K., Jensen, S.K. and Andersen, J.O. 1994. Inclusion of oxid-ized fish oil in mink diets: the influence on nutrient digestibility and fatty-acid accumulation in tissues. – J. Anim. Physiol. Anim. Nut. 72: 132-145. [DOI:10.1111/j.1439-0396.1994.tb00380.x]
29. Burtsev, I.A. 1972. Progeny of an intergeneric hybrid of beluga and sterlet. In Genetics, selection and hybridization (Sobel, Y., ed.). – Keter Press, pp 211-220.
30. Chen, Z., Guo, L., Amarnath, V. and Davies, S. 2012. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxi-dation. – Free Radic. Biol. Med. 53: 1226-1238. [DOI:10.1016/j.freeradbiomed.2012.07.077]
32. Corcos Benedetti, P., Di Aquino, M., Di Felice, M., Gentili, V., Tagliamonte, B. and Tomassi, G. 1987. Effects of a fraction of thermally oxidized soy bean oil on growing rats. – Nut. Rep. Int. 36: 387-401.
33. Eder, K. and Kirchgessner, M. 1997. Zinc deficiency and vitamin E status in rats fed olive oil or linseed oil. – Anim. Physiol. Anim. Nutr. 77: 66-76. [DOI:10.1111/j.1439-0396.1997.tb00739.x]
35. Eder, K. 1999. The effect of an oxidized dietary oil on plasma cholesterol and thyroid hormone concen-trations in miniature pigs fed on a hyperlipidemic diet. – Anim. Physiol. Anim. Nut. 82: 271-281. [DOI:10.1046/j.1439-0396.1999.00243.x]
37. Eder, K. and Stangle, G.I. 2000. Plasma thyroxine and cholesterol concentrations of miniature pigs are in-fluenced by thermally oxidized dietary lipids. – J. Nutr. 130: 116-121.
38. Engberg, R.M., Lauridsen, C., Jensen, S.K. and Jaco-bsen, K. 1996. Inclusion of oxidized vegetable oil in broiler diets: its influence on nutrient balanceand the antioxidant status of broilers. – Poult. Sci. 75: 1003-1011. [DOI:10.3382/ps.0751003]
40. Field, F.J., Albright, E. and Mathur, S.N. 1986. The effect of hypothyroidism andthyroxine replacement on hepatic and intestinal HMG-CoA reductase and ACAT activities and biliary lipids in the rat. – Metab. 35: 1085-1089. [DOI:10.1016/0026-0495(86)90019-3]
42. Gupta, R.P., Verma, P.C. and Garg, S.L. 1997. Effect of experimental Zinc deficiency on thyroid gland in Guinea-Pigs. – Ann. Nutr. Metab. 41: 376-381. [DOI:10.1159/000178010]
44. Hamre, K., Kolas, K., Sandnes, K., Julshamn, K. and Kiessling, A. 2001. Feed intake and absorption of lipid oxidation products in Atlantic salmon (Salmo salar) fed diets coated with oxidized fish oil. – Fish Physiol. Biochem. 25: 209-219. [DOI:10.1023/A:1022257928437]
46. Hasanpour, S., Salati, A.P., Falahatkar, B. and Mohammadi Azarm, H. 2016. Effects of dietary oxidized fish oil on growth and lipid metabolism in hybrid sturgeon (Huso huso ♂×Acipenser ruthenus ♀). – J. Mar. Sci. Technol. 15: 78-88.
47. Howell, B.R., Day, O.J., Ellis. T. and Baynes, S.M. 1998. Early life stages of farmed fish. In: Black, K.D., Pickering, A.D. (eds.) Biology of farmed fish. – Sheffield Academic Press, Sheffield, pp 27- 66.
48. Karalazos. V. 2007. Sustainable alternative to fish meal and fish oil in fish nutrition: effects on growth, tissue fatty acid composition and lipid metabolism. – Ph.D Thesis. Institute of Aquacu-lture, University of Stirling, Scotland, pp 205.
49. Katzeff, H.L., Yang, M.U., Presta. E., Leibel. R., Hirsh. J. and Van Itallie. T. 1990. Calorie restri-ction and iopanoic effects of thyroid hormone me-tabolism. – Am. J. Clin. Nutr. 52: 263- 266.
50. Koshio, S., Ackman, R.G. and Lall, S.P. 1994. Effe-cts of oxidized herring and canola oils in diets on growth, survival, and flavor of Atlantic salmon, (Salmo salar). – J. Agric. Food Chem. 42: 1164-1169. [DOI:10.1021/jf00041a022]
52. Lall, S.P. 2000. Nutrition and health of fish. In: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M. Olvera-Novoa, M.A. and Civera-Cerecedo, R. 2000. Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola. 19-22 Noviembre, Lewis-McCrea, L.M. and Lall, S.P. 2007. Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnorm-alities in juvenile Atlantic halibut (Hippoglossus hippoglossus). – Aquaculture 262: 142-155.
53. Nasopoulou, C. and Zabetakis. I. 2012. Benefits of fish oil replacement by plant originated oils in compounded fish feeds, a review. – LWT-Food Sci. Technol. 47: 217-224.
54. Tanis, B.C., Westendorp, G.J. and Smelt, H.M. 1996. Effect of thyroid substitution on hypochol-esterolemia in patients with subclinical hypothyr-oidism: a reanalysis of intervention studies. – Clin. Endocrinol. 44: 643-649. [DOI:10.1046/j.1365-2265.1996.739560.x]
56. Takeuchi, H., Matuso, T., Tokuyama, K., Shimom-ura, Y. and Suzuki, M. 1995. Diet induced ther-mosgenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a saff-lower oil diet or a linseed oil diet. – J. Nutr. 125: 920-925.
57. Watanabe, T. 1981. Lipid nutrition in fish. – Comp. Biochem. Physiol. 73B: 3-15.
58. Yoshida. H. and Kajimoto. G. 1989. Effect of dietary vitamin E on the toxicity of autoxidized oil to Rats. – Ann. Nut. Metab. 33: 153-161. [DOI:10.1159/000177532]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb