Volume 4, Issue 3 (12-2017)                   nbr 2017, 4(3): 226-235 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadpour R, Hosseinzadeh S R, Armand N, Chashiani S. Evaluation of growth features, photosynthetic pigments and antioxidant enzyme activity of lentils cultivars in response to water stress. nbr 2017; 4 (3) :226-235
URL: http://nbr.khu.ac.ir/article-1-3012-en.html
Behbahan Khatam Alanbia University of Technology
Abstract:   (7660 Views)
Water stress is one of the most important factors limiting the growth and yield of plants in many parts of the world. In order to evaluate the effects of water stress on some morphological, physiological and antioxidant enzyme activity traits of lentil, four lentil cultivars (i.e. Gachsaran, Kimia, Ziba and Robat) in four water deficit treatments including 25%, 50%, 75% and 100% of the field capacity (control) were studied in a factorial experiment, based on a completely randomized design with three replications. Water stress at 25 and 50% field capacity significantly decreased morpho-physiological traits and significantly increased antioxidant enzyme activity, proline and protein contents of all genotypes in comparison with the control group. Gachsaran and Robat cultivars were superior in most traits in comparison with the Kimia and Ziba cultivars. Under severe stress, the amounts of  proline and protein contents, CAT and SOD enzyme activity were significantly higher in Robat and Gachsaran cultivars than those of the Kimiya and Ziba cultivars. Results showed that Robat and Gachsaran cultivars were probably affected less by water stress due to more stress tolerance using various mechanisms such as more antioxidant enzyme activity, increased proline, proteins and photosynthetic pigments contents. Studied traits were introduced as suitable markers for identification of drought tolerant genotypes. Accordingly, Robat and Gachsaran cultivars were introduced as tolerant cultivars for cultivation under rainfed conditions.
Full-Text [PDF 290 kb]   (3114 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/12/9 | Revised: 2021/05/22 | Accepted: 2017/12/9 | Published: 2017/12/9 | ePublished: 2017/12/9

References
1. Ahmadpour, R., Hosseinzadeh, S.R. and Chashiani, S. 2016. Study of root morpho-physiological and biochemical characteristics of lentil (Lens culinaris Medik.) in response to moisture stress. – J. Plant Echophysiol. Res. 11: 39-51.
2. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y. and Sakuratani, T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean su-bjected to water logging. – Plant Sci. 163: 117-123.
3. Amiri, H., Ismaili, A & Hosseinzadeh, S.R. 2017. Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. Karaj). – Compost Sci. Util. 26: 1-14.
4. Bates, L.S., Waldern, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. – Plant Soil Environ. 39: 205–207.
5. Bayoumi, T.Y., Eid, M. and Metwali, E.M. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. – Afr. J. Biotechnol. 7: 2341-2352.
6. Beauchamp, C. and Fridovich, I. 1971. Superoxide di-smutase: improved assays and applicable to acryl am-ide gels. – Annu. Rev. Biochem. 44: 276-287.
7. Chandlee, J.M. and Scandalios, J.G. 1984. Analysis of variants affecting the catalase development program in Maize scutellum. – J. Appl. Genet. 69: 71–77.
8. Eraslan, F., Inal, A., Savasturk, O. and Gunes, A. 2007. Changes in antioxidative system and membrane dama-ge of lettuce in response to salinity and boron toxicity. – Sci. Hortic. 114: 5-10.
9. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. – Agron. Sustain. Dev. 29: 185–212.
10. Flexas, J. and Medrano, H. 2008. Drought-inhibition of photosynthesis in C3-plants: Stomatal and non-stom-atal limitation revisited. – Ann. Bot. 183: 183-189.
11. Gamze, O., Mehmet Demir, K.A. and Mehmet A.T. 2005. Effects of salt and drought stresses on germin-ation and seedling growth of pea (Pisum sativum L.). – Turk. J. Agric. For. 29: 237-242.
12. Ganjeali, A., Porsa, H. and Bagheri, A. 2011. Assess-ment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. – Agric. Wa-ter Manag. 98: 1477-1484.
13. Guerfel, M., Baccouri, O., Boujnah, D., Cha, W. and Zarrouk, M. 2008. Impacts of water stress on gas exchange, water elations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. – Sci. Hortic. 1: 1-7.
14. Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E. and Guzelordu, T. 2006. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post an thesis stages and its relations with nutrient uptake and efficiency. – Plant Soil Environ. 52: 868-876.
16. Hamdi A., Erskine W. and Gates P. 1992. Adaptation of lentil seed yield to varying moisture supply. – Crop Sci. 32: 987-990.
17. Hassanpour, H., Khavari-Nejad, R.A., Niknam, V., Najafi, F. and Razavi, K. 2012. Effects of penconazole and water deficit stress on physiolo-gical and antioxidative responses in pennyroyal (Ment-ha pulegium L.). – Acta Physiol. Plant. 34: 1537-1549.
18. Holy, M.C. 1972. Indole acetic acid oxidase: a dual catalytic enzyme. – Plant Physiol. 50: 15-18.
19. Hosseinzadeh, S.R., Amiri, H. and Ismaili, A. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. – Photosynthetica. 54: 87-92.
20. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R. and Panneersel-vam, R. 2009. Drought stress plants: a review on morphological characteristics and pigments composit-ion. – Int. J. Agric. Biol. 11:100-105.
21. Kumar, B., Mehra, K. L., and Sprata, R. L. 1983. An investigation on correlation patterns among yield components in lentil. – Lens Newsletter. 10: 10-12.
22. Lichtenthaler, H.K. and Wellburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. – Biochem. Soc. Trans. 11: 591-592.
23. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randapp, R.J. 1951. Protein measurement with the folin phenol reagent. – J. Biol. Chem. 193: 265-275.
24. Najaphy, A., Niari khamssi, N., Mostafaie, A. and Mirzaee, H. 2010. Effect of progressive water deficit stress on praline accumulation and protein profiles of leaves in chickpea. – Afri. J. Biotech. 9: 7033-7036.
25. Nazari, M.R, Habibpour Mehraban, F. and Maali Amiri, R. 2012. Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. – Russ. J. Plant Physiol. 59: 183-89.
26. Pagter, M., Bragato, C. and Brix, H. 2005. Tolerance and physiological responses of Phragmites australis to water deficit. – Aquat. Bot. 81: 285-299.
27. Parsa, M. and Bagheri, A. 2008. Legumes. Mashhad University. – Jahad Press. pp 522.
28. Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A., Najafi, F. and Roshanfekr, M. 2012. Use of bioc-hemical indices and antioxidant enzymes as a screen-ing technique for drought tolerance in Chickpea genotypes (Cicer arietinum L.). – Afr. J. Agric. Res. 7: 5372-5380.
29. Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A.R. and Najafi, F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water. – Acta Biol. Crac. Ser. Bot. 53: 47-56.
30. Reddy, T.Y., Reddy, V.R. and Anbumozhi, V. 2003. Physiological responses of groundnut (Arachis hypo-gea L.) to drought stress and its amelioration: a critical review. – Plant Growth Regul. 41: 75-88.
31. Sairam, R.K. and Saxena, D.C. 2001. Oxidative stress and antioxidants in wheat genotypes: possible mechan-ism of water stress tolerance. – J. Agron. Crop Sci. 184: 55-61.
32. Sikder, S., Foulkes, J. and West, H. 2015. Evaluation of photosynthetic potential of wheat genotypes under dr-ought condition. – Photosynthetica 53: 47-54.
35. Ahmadpour, R., Hosseinzadeh, S.R. and Chashiani, S. 2016. Study of root morpho-physiological and biochemical characteristics of lentil (Lens culinaris Medik.) in response to moisture stress. – J. Plant Echophysiol. Res. 11: 39-51.
36. Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y. and Sakuratani, T. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean su-bjected to water logging. – Plant Sci. 163: 117-123. [DOI:10.1016/S0168-9452(02)00080-8]
37. Amiri, H., Ismaili, A & Hosseinzadeh, S.R. 2017. Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. Karaj). – Compost Sci. Util. 26: 1-14. [DOI:10.1080/1065657X.2016.1249313]
38. Bates, L.S., Waldern, R.P. and Teare, I.D. 1973. Rapid determination of free proline for water stress studies. – Plant Soil Environ. 39: 205–207. [DOI:10.1007/BF00018060]
39. Bayoumi, T.Y., Eid, M. and Metwali, E.M. 2008. Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. – Afr. J. Biotechnol. 7: 2341-2352.
40. Beauchamp, C. and Fridovich, I. 1971. Superoxide di-smutase: improved assays and applicable to acryl am-ide gels. – Annu. Rev. Biochem. 44: 276-287. [DOI:10.1016/0003-2697(71)90370-8]
41. Chandlee, J.M. and Scandalios, J.G. 1984. Analysis of variants affecting the catalase development program in Maize scutellum. – J. Appl. Genet. 69: 71–77.
42. Eraslan, F., Inal, A., Savasturk, O. and Gunes, A. 2007. Changes in antioxidative system and membrane dama-ge of lettuce in response to salinity and boron toxicity. – Sci. Hortic. 114: 5-10. [DOI:10.1016/j.scienta.2007.05.002]
43. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. – Agron. Sustain. Dev. 29: 185–212. [DOI:10.1051/agro:2008021]
44. Flexas, J. and Medrano, H. 2008. Drought-inhibition of photosynthesis in C3-plants: Stomatal and non-stom-atal limitation revisited. – Ann. Bot. 183: 183-189.
45. Gamze, O., Mehmet Demir, K.A. and Mehmet A.T. 2005. Effects of salt and drought stresses on germin-ation and seedling growth of pea (Pisum sativum L.). – Turk. J. Agric. For. 29: 237-242.
46. Ganjeali, A., Porsa, H. and Bagheri, A. 2011. Assess-ment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. – Agric. Wa-ter Manag. 98: 1477-1484. [DOI:10.1016/j.agwat.2011.04.017]
47. Guerfel, M., Baccouri, O., Boujnah, D., Cha, W. and Zarrouk, M. 2008. Impacts of water stress on gas exchange, water elations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. – Sci. Hortic. 1: 1-7.
48. Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E. and Guzelordu, T. 2006. Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post an thesis stages and its relations with nutrient uptake and efficiency. – Plant Soil Environ. 52: 868-876.
49. Hamdi A., Erskine W. and Gates P. 1992. Adaptation of lentil seed yield to varying moisture supply. – Crop Sci. 32: 987-990. [DOI:10.2135/cropsci1992.0011183X003200040031x]
50. Hassanpour, H., Khavari-Nejad, R.A., Niknam, V., Najafi, F. and Razavi, K. 2012. Effects of penconazole and water deficit stress on physiolo-gical and antioxidative responses in pennyroyal (Ment-ha pulegium L.). – Acta Physiol. Plant. 34: 1537-1549. [DOI:10.1007/s11738-012-0952-8]
51. Holy, M.C. 1972. Indole acetic acid oxidase: a dual catalytic enzyme. – Plant Physiol. 50: 15-18. [DOI:10.1104/pp.50.1.15]
52. Hosseinzadeh, S.R., Amiri, H. and Ismaili, A. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. – Photosynthetica. 54: 87-92. [DOI:10.1007/s11099-015-0162-x]
53. Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H.J., Somasundaram, R. and Panneersel-vam, R. 2009. Drought stress plants: a review on morphological characteristics and pigments composit-ion. – Int. J. Agric. Biol. 11:100-105.
54. Kumar, B., Mehra, K. L., and Sprata, R. L. 1983. An investigation on correlation patterns among yield components in lentil. – Lens Newsletter. 10: 10-12.
55. Lichtenthaler, H.K. and Wellburn, A.R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. – Biochem. Soc. Trans. 11: 591-592. [DOI:10.1042/bst0110591]
56. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randapp, R.J. 1951. Protein measurement with the folin phenol reagent. – J. Biol. Chem. 193: 265-275.
57. Najaphy, A., Niari khamssi, N., Mostafaie, A. and Mirzaee, H. 2010. Effect of progressive water deficit stress on praline accumulation and protein profiles of leaves in chickpea. – Afri. J. Biotech. 9: 7033-7036.
58. Nazari, M.R, Habibpour Mehraban, F. and Maali Amiri, R. 2012. Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. – Russ. J. Plant Physiol. 59: 183-89. [DOI:10.1134/S102144371201013X]
59. Pagter, M., Bragato, C. and Brix, H. 2005. Tolerance and physiological responses of Phragmites australis to water deficit. – Aquat. Bot. 81: 285-299. [DOI:10.1016/j.aquabot.2005.01.002]
60. Parsa, M. and Bagheri, A. 2008. Legumes. Mashhad University. – Jahad Press. pp 522.
61. Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A., Najafi, F. and Roshanfekr, M. 2012. Use of bioc-hemical indices and antioxidant enzymes as a screen-ing technique for drought tolerance in Chickpea genotypes (Cicer arietinum L.). – Afr. J. Agric. Res. 7: 5372-5380.
62. Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A.R. and Najafi, F. 2011. Drought stress effects on photosynthesis, chlorophyll fluorescence and water. – Acta Biol. Crac. Ser. Bot. 53: 47-56. [DOI:10.2478/v10182-011-0007-2]
63. Reddy, T.Y., Reddy, V.R. and Anbumozhi, V. 2003. Physiological responses of groundnut (Arachis hypo-gea L.) to drought stress and its amelioration: a critical review. – Plant Growth Regul. 41: 75-88. [DOI:10.1023/A:1027353430164]
64. Sairam, R.K. and Saxena, D.C. 2001. Oxidative stress and antioxidants in wheat genotypes: possible mechan-ism of water stress tolerance. – J. Agron. Crop Sci. 184: 55-61. [DOI:10.1046/j.1439-037x.2000.00358.x]
65. Sikder, S., Foulkes, J. and West, H. 2015. Evaluation of photosynthetic potential of wheat genotypes under dr-ought condition. – Photosynthetica 53: 47-54. [DOI:10.1007/s11099-015-0082-9]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2024 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb