1. Get persistent links for your reference list or bibliography. Copy and paste the list, we’ll match with our metadata and return the links. Please register for citation matching, verify an email address, and agree to the terms. Members may also deposit reference lists here too.
2. eXtyles Logo
-------------
3. Castro, L.N. and Von Zuben, F.J. 2000. An evolutionary immune network for data clustering. – IEEE Brazilian Symposium on Artificial Neural Networks. pp 84-89.
4. Castro, L.N. and Timmis, J. 2002. Artificial immune systems; a new computational approach. – Springer-verlag. London, UK.
5. Castro L.N. and Von Zuben, F.J. 2000. The clonal selection algorithm with engineering applications. –GECCO 2000, Genetic and Evolutionary Computation Conference 36-37.
6. Dasguptaa, D., Yua, S. and Nino, F. 2011. Recent advances in artificial immune systems: models and applications. – App. Soft Comp. 11: 1574-1587. [
DOI:10.1016/j.asoc.2010.08.024]
7. Engelbrecht, A.P. 2007. Computational intelligence an introduction, artificial immune systems. Second edition. Vol. 5, pp 413-448.
8. Graaff, A.J. and Engelbrecht, A.P. 2006. Optimised coverage of non-self with evolved lymphocytes in an artificial immune system. – Int. J. Comp. Intel. Res. 2: 127-150.
9. Heckerman, D.A. 1996. Tutorial on learning with Bayesian networks. Technical report. – MSR-TR. 95-96.
10. Hunt, J.E. and Cooke, D.E. 1996. Learning using an artificial immune system. – J. Net. Com. App. 19: 189-212. [
DOI:10.1006/jnca.1996.0014]
11. Jerne, N.K. 1974. Towards a network theory of the immune system. – Ann. Immunol. 2: 373-389.
12. Kim, J. and Bentley, P.J. 1999. Negative selection and niching by an artificial immune system for network intrusion detection. – GECCO 1999, Genetic and Evolutionary Computation Conference, pp 149-158.
13. Kim, J. and Bentley, P.J. 2002. Immune memory in the dynamic clonal selection algorithm. – 1st International Conference on Artificial Immune Systems, pp 59-67.
14. Nasraoui, O., Dasgupta, D. and Gonzalez. 2002. The promise and challenges of artificial immune system based web usage mining. – Second International Conference on Data Mining. pp 29-39.
15. Pearl, J. 1990. Bayasian network, UCLA, CL.
16. Rasoulzadeh, M., Golmakani, N., Ebrahimzadeh, Zagmi, S. and Nasiri, S. 2017. Cranberry Effects on Prevention of Urinary Tract Infection. – J. St. Res. Comm. Sabzevar Univ. Med. Sci. 22: 16-22.
17. Sarafijanovic, S. and Le Boudec, J. 2004. An artificial immune system for misbehavior detection in mobile ad-hoc networks with virtual thymus. – 3st International Conference on Artificial Immune Systems, pp 342-356. [
DOI:10.1007/978-3-540-30220-9_28]
18. Shuohao, L., Zhang, J. and Boliang, A. 2014. An incremental structure learning approach for Bayesian network. – The 26th Chinese Control and Decision Conference. DOI: 10.1109/CCDC.2014.6853036. [
DOI:10.1109/CCDC.2014.6853036]
19. Twycross, J. 2007. Integrated innate and adaptive artificial immune systems applied to process anomaly detection. – Ph.D. thesis, School of Computer Science. University of Nottingham, UK.