Search published articles


Showing 5 results for Lars-Wg

, ,
Volume 16, Issue 42 (9-2016)
Abstract

In this research, impacts of climate change on the streamflow hydrological status of the Arazkooseh River are discussed. After Calibration and validation of the LARS-WG, HadCM3 was downscaled under A2 Scenario in three climatology station. Beside, calibration and validation of the SWAT model were done by observed data relative to past period of times. Streamflow values are then predicted using climatic parameters of period of 2011-2030, 2046-2065 and 2080-2099 years via SWAT model. The results indicated that the average annual temperature will increased around 0.8, 1.2 and 4.9 °C in desired periods, respectively. Precipitation values will increased 8.8 and 11.2 percent in the early and mid- century and it will decreased with 7.8 percent in the last years of century, correspondingly. The peak of rainfall will moved from month of March to the December. Because of climate changes, streamflow will increase 13 and 5 percent in the near periods. By contrast, in this case, it will reduce around 18 percent in far future. In this case research, the river discharge will increased in autumn and will decreased in spring seasons. Likewise, results of estimation showed that the annual peak flow will shifted from month of March to the April.


, , , , ,
Volume 17, Issue 47 (12-2017)
Abstract

The purpose of this research is the simulation of the maize function to scenario of climate change to the present and future. So to survey the region climate, daily data, maximum and minimum temperature, precipitation and radiation have been utilized during the period of (1987-2016). In order to simulating of climate in future, firstly the date of IPCM4 model under scenario and 30’s and 50’s with downscaling LARS-WG model. Before the simulation yield of maize, APSIM model was evaluated and validated. To calculate the maize yield the output of LARS model, plant date and were utilized as the cropping input model of APSIM. By variance analysis maize yield was compared in present and future. The results showed that the APSIM model validation can simulate acceptable accuracy and climate parameters change effect on the yield rate of maize. And on the basis of the highest yield in Fasa the lowest in the city Abade in base line. In future under different scenarios of climate change, maze grain yield in Fars province except Abade, other cities are decreasing than base line.
 

 

Mojtaba Shahnazari, Zahra Hejazizadeh, Mohammad Saligheh,
Volume 20, Issue 59 (12-2020)
Abstract

Abstract
In this research, while studying climate conditions in the current period and analyzing changes in temperature, precipitation level, and the sunlight received, current conditions were also analyzed based on daily data from synoptic stations in the region, which had meteorological data recorded for at least 30 years. Given the environmental conditions necessary for the growth of rice, the availability of its phenological data, its high-low temperature thresholds, the Degree Day systems needed for the completion of its life cycle, and the phenological processes related to its economic production, a suitable agricultural calendar was specified. During the March-July period, this calendar showed variations in different provinces. Based on the current temperature conditions and the probable continued warming trend of the planet in the decades to come, nwoDscale was applied to the output from the atmospheric general circulation model MCdaH3 under  scenario using LARS-WG5 model. In this study, years between 1969 and 1990 were used as the base period, while years between 2046 and 2065 were studied as the future period. Temperature and precipitation conditions for the future period were simulated. Obtained output was then studied and compared with temperature conditions that were suitable for the plant to grow in the region. With some differences, results showed that the agricultural calendar for rice in Gilan and Mazandaran provinces will shift to winter. Given the different temperature conditions of Golestan province, its agricultural calendar will shift to spring.
 
Dr Bromand Salahi, Vahid Safarian Zangir,
Volume 23, Issue 68 (3-2023)
Abstract

Global warming and temperature rise will have many effects on different sectors, including agriculture, the warming of the earth will increase the rate of evaporation, and consequently the increase in the demand for agricultural products will increase. In this study, in order to monitor the effect of global warming on Mughan Plain wheat, using the LARS-WG model as a relatively inexpensive and accurate instrument for producing climate multi-yearly climate change scenarios On a daily basis, In Ardabil province, Germi Station was selected as the representative of the three stations in the study area due to the data in the appropriate statistical period. In the present study, to monitor the effect of global warming on precipitation fluctuations, as well as in the production and cultivation of wheat crop in Moghan plain, the LARS-WG model and the HADCM3 climate model output under A1B scenario as well as climate data (minimum temperature, maximum temperature, precipitation and Daily Sunshine) The Germys station was used over a 14 year period (2004-2007).The results of the research show that by comparing the monthly mean of these parameters, this result was obtained that at confidence level 1 there is not a significant difference between the simulation data from the model and observational data in the base period and the mean The climatic parameters of the data obtained from the model and the actual data are similar and there is a high correlation between them. Finally, by comparing observational monthly meanings and modeling of climatic elements of precipitation, minimum and maximum temperatures and sunshine were shown using statistical parameters RMSE, MAE, NA and R2 The model (LARS-WG5) is used to accurately simulate daily data in the parameters of the Mughan Plain, Ardebil province. The results of this study showed that the average decrease in yield of irrigated wheat and the decrease of its production in the study area could be due to the decrease of precipitation and the increase of the regional temperature which is due to global warming.
Zahra Hejazizadeh, Sharifeh Zarei, ,
Volume 23, Issue 69 (6-2023)
Abstract

Abstract
In recent years, attention has been paid to climate change, which could be the result of economic, social, and financial losses associated with extreme weather events. The purpose of this study is to investigate the variation of extreme temperature and precipitation in Kurdistan province. For this purpose, daily rainfall data, minimum temperature and maximum temperature of 6 stations were used during the statistical period (1990-1990). And their changes during the period (2041-2060) using the universal HadGEM2 model under two scenarios RCP2.6 and RCP8.5 and the LARS-WG6 statistical downscaling were investigated. In order to study the trend of climatic extreme indexes, rainfall and temperature indices were analyzed using RClimdex software. The results showed that during the period (2016-1990), hot extreme indicators have a positive and incremental trend. This trend is significant for the "number of summer days" and "maximum monthly of maximum daily temperature" indicators. This is while the cold extreme indexes had a decreasing and negative trend. This trend was significant only for the "cold days" index. Extreme precipitation in Kurdistan province has a negative trend in most stations. ،this trend is significant at most stations, that indicates a reduction in the severity, duration and frequency of precipitation during the study period. The results of the climate change outlook also indicate that the temperature will increase over the next period and rainfall will decrease.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb