Search published articles


Showing 23 results for Rahimi

Fereydoon . Babaei Aghdam, Rahim Rahim Heydari Chianeh, Qassem Rahimifard,
Volume 0, Issue 0 (3-1921)
Abstract

The aim of this study was to investigate the effect of destination image and service quality on the competitiveness of tourism destinations studied: Tabriz city was written. This research is applied in terms of purpose and analytical in terms of descriptive method. The statistical population consisted of incoming tourists to the city of Tabriz, the sample size of which was estimated to be 384 using the Cochran's formula for an unlimited population. In order to collect field information, a researcher-made questionnaire was used, the validity of which was confirmed by experts. Cronbach's alpha method and combined reliability were also used to evaluate the reliability, and the results of these tests confirmed the reliability of the questionnaire used. In order to analyze the data and information of this research, SPSS and LISREL software were used. The results of the research hypotheses showed that the destination image and service quality have a positive and significant effect on the competitiveness of tourism destinations. According to the path coefficient obtained for these two independent variables, the effect of the destination image variable on the competitiveness of tourism destinations was higher than the quality of services.
Mr Yaser Nazaryan, Phd Amane Haghzad, Phd Laila Ebrahimi, Phd Kia Bozorgmehr,
Volume 0, Issue 0 (3-1921)
Abstract

Urbanization and increase in urban population as a result of the natural increase in population and rural-urban migration, has led to the concentration of the highest material and spiritual human capitals in these urban settlements. At the same time, various natural and human crises threaten these capitals. Urban management has undertaken various programs to deal with these crises, and the latest approach in this regard is to increase the resilience of cities. The concept of resilience can be discussed in various physical, economic, social and environmental dimensions.
The present study with a descriptive-analytical approach and with the aim of assessing the physical resilience of Tabriz metropolitan areas and determine their status relative to each other. For this purpose, multi-criteria decision making methods (MADM) and hierarchical analysis process (AHP) have been used. Also, 3 models of TOPSIS, VIKOR and COPRAS have been used to rank regions in terms of physical resilience. Finally, the Copeland model was used to combine the results of the mentioned models. The results show that regions 2, 8 and 9 jointly have the highest physical resilience. In the next ranks are regions 1, 10, 3, 7, 5, 4 and finally region 6, respectively.
Yaser Nazaryan, Amane Haghzad, Leyla Ebrahimi, Kia Abozorgmehr51,
Volume 0, Issue 0 (3-1921)
Abstract

Vulnerability is the inevitable result of risks and crises that threaten societies to varying degrees. One of the main threats is earthquakes. The recent approach to disaster management programs is to increase the resilience of communities that have different dimensions. One of them is the physical dimension of urban resilience, which is linked to the components of land use planning. In this research, with the aim of analyzing land use criteria affecting the resilience of Tabriz city and using fuzzy AHP method, research has been done.
Based on the results of the study of theoretical foundations, 13 effective criteria have been identified and the basis of action. The required data were extracted and used from maps and spatial information of urban plans, especially the detailed plan of Tabriz, Then Using ARC Map10.3.1 software, each criterion is analyzed and each criterion is presented in the form of a fuzzy map. Sum, Product and gamma fuzzy operators have been used to achieve the final resilience map. Due to the high accuracy of the gamma operator, its results are considered as the final output.
The results show that in the city of Tabriz, 2% have very low resilience, 40.8%, low resilience,15.3% moderate resilience, 23.5% high resilience and 7.2% very high resilience - based on the Used criteria-. Areas with low resilience are generally located in the north of Tabriz city and correspond to the informal settlement texture and the worn-out texture of the city, which corresponds to the fault line of Tabriz and Micronutrient and permeability are other features of these areas. Due to the high population density in these areas, it is necessary to immediately adopt the necessary programs to improve the quality of physical resilience criteria in the city.

Mostafa Karampour, Yeganeh Khamoshian Sahneh, Zohreh Ebrahimi, Hamed Heidari,
Volume 0, Issue 0 (3-1921)
Abstract

In recent years, much attention has been allocated to the study of atmospheric rivers because atmospheric rivers are massive carriers of moisture from remote areas. In this study, atmospheric rivers were studied for Iran and the neighboring countries in terms of their source of formation and their relationship and correlation with the NAO index. To study them the 1994 to 2019 data of various climatic elements such as Vwind, Function wind, NAO,, wind Shum, Meridonal wind were used. The results showed that during the study period, the ARs direction became more southerly, and jet streams played a major role in producing and determining the direction of river flow. Jetstream performance can also be used to determine the potential of an area in identifying atmospheric rivers. The highest correlation of the Transatlantic Transplant Index is with the tidal currents at the levels of 500 and 400. If the pressure centers are located in the southern part of the atmospheric rivers and the jet streams reach the eastern regions about 60 degrees, the length of the atmospheric rivers will reach more than 12,000 kilometers and  affect the eastern regions of Iran to Pakistan, Bangladesh and Afghanistan.

Yosouf Ghavidel Rahimi, Manochehr Farajzadeh, Mehdi Alijahan,
Volume 15, Issue 36 (6-2015)
Abstract

Global warming and the meaningful relationship between temperature and precipitation changes over different areas of the earth with temperature increment of the earth, are considered as the most important patterns of this century’s climate changes. Today, there is debate over climate change and global temperatures increasing. Damaging effects of this phenomenon on the planet is one of the most challenging issues in global scale. Because of this, the research ahead is done for the detection of global warming on maximum temperatures, monthly and periodic (hot and cold) as well. For this study, two groups of data, temperature data of 17 synoptic stations and corresponding amounts of data in global temperature anomalies were figured out over 60 years period of time (1951 to 2010). Goals, the Pearson correlation method for detecting relationships between data's, linear and polynomial regression for trend analysis time series data , To illustrate the correlation between the spatial distribution of temperature data with global warming stations nationwide Geostatistical model Finally, non-parametric test for detecting significant temperature change Man - Kendall were used. According to the results impact of global warming on the maximum temperature in the cold months like January, December and November should be much lower, and the highest in spring and summer season in the southern stations such as Abadan, Ahwaz and Shiraz seen. The above process is also evident in periods of hot and cold temperatures and the influence of the stations temperature of the warm period of global warming were higher than cold period and represent an increase in the temperature of the warm period of years. In between, the number of stations as well as Anzali, Urmia and Khorramabad stations in some months had the opposite influence of global warming and seen drop in the maximum temperatures of them. It is also observed in the results obtained from the analysis period. Station's maximum temperature trend change is represents significant in the summer month. Changes trend in the months of July, August and September, is significant that the process is more pronounced in the southern stations. Significant analysis trend changes have been taken in periods (cold and hot) in studied stations indicative of its significance in warm period.
Yousouf Ghavidel Rahimi, Manochehr Farajzadeh Asl, Solmaz Motalebizad,
Volume 16, Issue 40 (3-2016)
Abstract

This study tries to identify, classify, and analyze synoptic cold wave in North West region of Iran. This study applies standardized (z scores) index of Minimum Temperature in the period of 1951-2010.as such cold waves were classified based on the intensity of occurance. Out of occured cold wave in North West of the coldest identified wave pertaingt each class for synoptic analyzes were selected. This study suggests that the prevailing pressure pattern during the relevant wave indicates high pressure over the earth surface as well as deep trough in upper layer. From the continuing cold standpoint, the role of changing position from pavallel wind in to meridional corresponel to blocking is very offective. Blocking in turn leads to reduction in speed of cold air masses which are originating from higher latitude. They were assouclated with cold waves. More precipitation as so ciated with higher latitude as well as low speed flows will lead to strong and continious waves.


Kamal Omidvar, Reza Ebrahimi, Mohammad Kykhsrvy Kayani, Ghasem Lkzashkoor,
Volume 16, Issue 43 (16 2016)
Abstract

The aim of this study was to investigate the effects of global warming on where the slope changes when the monthly temperature in Iranian territory over the coming decades (2050-2015). The simulated temperature dynamic model EH5OM subset Hybrid Models atmospheric circulations (GCM) selection and data model of the Center for Theoretical Physics Salam (Italy) were derived from emission scenarios A1B scenario was chosen given the scenario of 2100 -2001 found that from 2050 to 2015 were used in this study data is then output the data in the fourth edition of the regional climate model (RegCM4) Linux environment was fine scale output data Downscaling model with dimensions of 27/0 * 27 / Degrees latitude is where the dimensions of 30 x 30 km area of ​​approximately cover the average temperature of the matrix deals 13140 2140 * was extracted. Finally, the slope of the average monthly temperature during the period under study by Mann-Kendall slope age and matrix computation in MATLAB software 13140 * 12 respectively. Results show rising temperatures in March and April to June, more than 90% of the country, that it will be spring's warmer. Increasing the temperature in the winter months and spring mountainous parts of the western half of the country is warming the cold regions of Iran. Temperature negative trend in October and November in the northern part of the eastern half of the region's countries could be indicative of colder temperatures in the northern West.


Dr Zahra Hejazizadeh, Mr Meysam Toulabi Nejad, Mr Alireza Rahimi, Mrs Nasrin Bazmi, Mrs Atefeh Bosak,
Volume 17, Issue 47 (12-2017)
Abstract

The aim of this study is modeling spatiotemporal variations of albedo. This study was conducted using simultaneous effects of several components, such as wetness of surface layer of soil, cloudiness, topography and vegetation density (NDVI), using MEERA2 model with a resolution of 50 in 50 km during 2000-2010 in Iran. The results of spatial analysis of albedo values in Iran showed that the highest value is in 44 to 45 degrees of east longitude about 2.8 to 3.3 and the lowest value of albedo is also in 52 to 53 degrees of east longitude, that is, the eastern slopes of the Zagros Mountains, have been recorded at 1 to 1.5 units. In terms of provincial rank, the largest albedo is about 0.25 units in Ilam province and the Fars province is ranked next about 0.24 units. The lowest amount of albedo also in the Gilan provinces and in next Mazandaran province are about 0.19 and 0.18 respectively. In addition, the results of temporal analysis in seasonal scale showed that the highest albedo in Iran in winter was 0.26 and its lowest amount was recorded in spring with 0.23 units. In general, according to the factors used, it can be said that the western and central parts of the country have a highest albedo, and the north and northwest regions of the country have a lowest albedo.
 

Chenoor Mohammadi, Manouchehr Farajzadeh, Yousef Ghavdel Rahimi, Abbas Ali Aliakbar Bidokhti,
Volume 18, Issue 48 (3-2018)
Abstract

 This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the Ta variation coefficient is four times the one of the LST. Our analysis indicated that while in winter latitude is the key factor in explaining the distribution of the differences LST-Ta, in other seasons the role of slope and vegetation become more prominent. After obtaining the spatial patterns of LST and Ta, we estimated Ta using regression models in spatial resolution of 0.125˚. The lowest estimation error was found in the months of November and December with a high explanatory coefficient (R2) of 70% and a standard error of 1 ° C.  On the other hand, the maximum error was obtained from May to August with R2 between 59 to 63% and a standard error of 1.6 ° C which is significant at the 0.05 level. In addition, result of evaluation of individual months showed that estimation of Ta is more accurate at the cold months of the year (November, December, January, February, and March). With considering different land uses, the highest R2 was related to waters and urban areas (96 to 99%) in warm months, and the lowest R2 was for mixed forest and grassland (between 15 and 36%) in cold months.

Ali Reza Rahimi, Ali Reza Karbalaee Doree, Mohammad Reza Karbalaee,
Volume 18, Issue 49 (3-2018)
Abstract

One of the most important parameters in maximal use of radiant energy is the proper deployment of photovoltaic. The purpose of this study was to determine the optimum setting and tilt for installing photovoltaic panel in Kashan city. For this purpose, using the Masters Gilbert physical relations and relationships, the radiation received on the surface of the panel is calculated. The results of this study indicate that the amount of radiation received on the collector's surface in the south and in different slopes, 64 percent of the time of year, is more than the radiation on the panel surface mounted in the direction of the southeast or west with different slope angles. The highest amount of radiation is in the Azimuth to the south at a gradient of 30 degrees and 40 degrees; Southwest Azimuth (30 degrees) is almost similar to the South Azimuth and only in the southeast west, in summer, glides near the verge, they receive more radiation than the south. The amount of radiation received on the surface of the panel in the direction of south east west (Azimuth 60 °) on different slopes in 87% of the year is greater than the radiation on the panel surface mounted east or west (90 ° azimuth) with different slope angles. By comparing the results, it turns out that the direction of the photovoltaic panel installation will change, as the south changes to the east or west, the intensity of radiation will decrease in the days of the year. The highest photovoltaic energy output in Kashan is in the direction to the south, and with the angle of installation of photovoltaic panel 30 degrees from the horizon line. The most suitable slope for mounting panels between 30 and 40 degrees was obtained from other slopes.

Sana Rahmani, Sayed Hossein Vahedi, Leila Abedi Far, Saleh Ebrahimi Pour,
Volume 18, Issue 50 (3-2018)
Abstract

Iran is among the countries which id most vulnerable to natural disasters, especially earthquakes. This natural phenomenon creates a disaster in an area of Iran every few years and destroys the human and financial potentials of the country and it has also irreversible mental and emotional consequences. Due to the unexpected nature of most natural disasters and the need for rapid and accurate decision-making and implementation process, fundamental and theoretical basis has created a knowledge called crisis management. Bojnord city is the center of Bojnord town in North Khorasan province and is the largest city in the province. The city is one of the high altitudes of North Khorasan and is a mountainous region from the natural perspective. Based on census population in 2011, Bojnord has a population over 207,196 people. Bojnord is one of the cities that are located in a zoning with a very high relative risk. Moses Baba fault and Dubarar-tower fault of Bojnord are located in the immediate vicinity of city and in some regions the city is built along this fault. Faults in Bojnord have been the origin of devastating earthquakes in history and are able to work once again and threaten the city which determined the importance and role of crisis management and passive defense in earthquake more than ever. In addition to the potential threat, Bojnord faults has made clear the adverse consequences arising from the filling of Bojnord plain from human habitations and the development of the city towards the fault line at a distance of 150 meters and this has also attracted attention to passive defense two times more. Therefore, identifying risk zones (faults and earthquakes) in the city can show the vital artery in low risk decision areas and zones with low risk for the construction of temporary housing camps during the crisis. Bojnord is in a bowl surrounded by mountains and down the valley. 

Alireza Entezari, Fatemeh Mayvaneh, Khosro Rezaie, Fatemeh Rahimi,
Volume 18, Issue 51 (6-2018)
Abstract

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray Man software environment. Then UTCI and PMV index values were calculated using Bioklima software. The results showed that the most severe cold temperature stress on PMV index is in the winter and late autumn and UTCI index in January and February are the coldest stress. The power of neural networks, prediction of future performance network (generalized orientation) it simply is not possible and the new model presented in this paper have been restricted Boltzmann machine-based neural networks or neural networks is used deep belief. Using this structure, metrics Mean Squared Error (MSE) and mean absolute percentage error (MAPE) benchmark ate for seven indexes derived from data gathered by three factors related to the occurrence of weather conditions and other indicators of thermal comfort of human the system was evaluated. Assessment by dividing the data into training and testing parts, and the ratios have been of two-thirds, fifty percent and one-third And two benchmark MSE and MAPE were calculated. The proposed system performance in forecasting the human thermal comfort is desirable.


Yousef Ghavidel Rahimi, Manouchehr Farajzadeh, Esmaeel Lashani Zand,
Volume 18, Issue 51 (6-2018)
Abstract

In this study, the changes in the Khorramabad storm in the period of 1952 to 2015 have been investigated. For this purpose, data from meteorological codes 06 and 07 were received from the Meteorological Organization of the country, and after identifying the days of winding with dust storms and calculating their monthly frequency, monthly, seasonal and annual time series were analyzed. In this study, descriptive statistics, cluster analysis, linear and polynomial trend analysis, and nonparametric Mann-Kendal test were used to study the frequency variation of dust storms in Khorramabad station. The results of the research showed that the monthly frequency of dust storms in Khorramabad station in the middle of May, July and June is May and July, respectively, and from May to July (May to July), the frequency of storms in the dust and dust Khoramabad station is added that this issue is not related to the district heating and dry season. In the seasonal season other than the autumn, which is not frequent with frequent dust storms, in the rest of the seasons, especially in spring and summer, the seasonal concentration of dust storms in Khoramabad has been intensified. The analysis of the trend of time variation in the occurrence of dust storms in Khorramabad station showed that in most of the months of the year and in the three seasons of spring, summer and autumn, as well as in the annual period, there was a significant change in the frequency of dust storms in Khorramabad station. It is increasing with a relatively steep slope, indicating that in the future, the frequency of dust storms in Khorramabad station will be increased.

Fariba Esfandiary Darabad, Masoud Rahimi, Khodadad Lotfy, Ebadi Elhameh,
Volume 20, Issue 57 (6-2020)
Abstract

So that the morphological and transverse changes of the Ghezelozan River have been evident in recent years and caused some problems. In this study, the detection of river side changes was carried out using satellite imagery of TM and OLI Landsat 5 and 8 in the period 1993 to 2013, during which an interval of 158 km from the Ghezelozan River, using the transect method evaluated. The channel duct was divided into 24 transects based on morphology and the process of change. The average migration rate of the Gezelozan River duct has been around 4.47 m / year over the past 20 years. The highest transhumance rate between 1993 and 2013, at 10.58 m / year, is related to transect 16, resulting in 52.51 hectares on the right bank of the river. Overall, the results show that during the period 1993 to 2013, close to 207.14 hectares was added to the right bank of the river and nearly 215.31 hectares from the right bank were decreased. Also, in this study, sinusoidal index was used to study the shape of the duct flat, based on which there are 15 sinusoidal transects.
 

Alireza Rahimi, Nader Nazemi, Jamaleddin Honarvar,
Volume 21, Issue 60 (3-2021)
Abstract

Energy plays a major role in providing welfare of urban and rural households, and reforming energy consumption patterns, in addition to price balancing, requires recognition and acts of cultural and social variables affecting the pattern of consumption and savings. Considering the importance of saving electricity and its relation with consumer behavior, in this study, the difference in urban and rural communities was investigated in terms of effective factors on energy savings. The present research is descriptive-analytical in terms of purpose and method. The data-gathering tool and information collection and interviews with urban and rural households in Poledokhtar city. The statistical population includes urban and rural households in Poledokhtar Township (N= 30012). Using Cochran formula and simple random sampling method, 379 households (244 urban households and 135 rural households) were selected. In the data analysis section, analysis of variance and logistic regression tests were used. The results showed that there is a significant difference between the factors and indicators affecting power saving in rural and urban areas. The individual agent and the factor of behavior management and purchasing, while the factor is the most important factor in saving households in rural areas, primarily influence power saving in urban areas.

Zahra Hedjazizadeh, Aras Khosravi, Seyed Asaad Hosseini, Alireza Rahimi, Ali Reza Karbalaee Doree,
Volume 21, Issue 63 (12-2021)
Abstract

One of the most important energy sources in the world is solar energy, which is a renewable resource and does not cause any damage to the environment. Which all of these features justify using it as a clean energy source and economically viable cost.. Due to the relatively large area of the Iran in low latitudes and relatively dry climatic conditions, in terms of solar energy utilization it uses excellent conditions. Solar power plants are considered as power generation and transmission networks whose is important that the location features of their construction sites are effective in reducing the risk of investing in solar energy. In this study, using geographic information system and fuzzy valuation method for the criteria and method of weighing (AHP), was considered the potential of the Kavir & desert region and Makran coast for the purpose of obtaining energy from the sun. For this purpose, were used the 14 criteria related to the climatic, infrastructural, and technical and physical conditions of the area. In order to overlap the fuzzy layers were used the usual operators, Gamma, Product and also the Sum Weighted Overlay operator to compare and present the appropriate result. Each of the operators has a different sensitivity to the fuzzy overlap of the layers. For this reason, was considered the Gamma 0.9 operator, due to the high sensitivity for building power plants with high electrical power generation and the Sum Weighted Overlay operator, for the construction of smaller capacity plants. In the overlay map, using the Gamma 0.9 operator, about 2%, and in the overlay map with the weighted operator, about 33% of the study areas were found to be very suitable for the construction of solar power plants.

Fariba Sfandyary Darabad, Mansour Kheirizade, Masoud Rahimi,
Volume 22, Issue 66 (9-2022)
Abstract

Floods are one of the most abundant and destructive natural disasters that every year are caused heavy losses of life and property. Due to human activity in river systems and construction in rivers, flood damage has an upward trend. One of the most important actions to reduce flood damage is the provision of flood hazard zoning maps and their use in spatial planning. In this study, the risk of flood in the Nirchay River Basin that located Ardebil province was investigated. For this purpose, the HEC-HMS model was used to simulate rainfall-runoff and to identify flood zones and fuzzy logic in order to overlay the layers and prepare a flood hazard zoning map.The simulation results show the high performance of the HEC-HMS model in simulating rainfall-runoff of the Nirchay River Basin and estimating peak flood discharges. Rainfall conversion to runoff at the Nirchay River Basin controlled by slope and land-use.The most runoff height and peak flow in Nirchay River Basin are located in the upstream sub-basins. This is due to the steep, low permeability soil, frequency impervious surfaces and high CN. The combination of layers using fuzzy logic has shown that about 8.6% of the surface of the basin are located with a high risk of flooding. These zones are located mainly on the floodplain of the Nirchay Basin. Due to the Low valley width and low slope, these lands are always at flood risk. Most settlements in the study area are located at downstream of the basin. This has increased the risk of flooding.
 
Mr Morad Ebrahimi, Dr Hasan Afrakhteh, Dr Hamid Jalalian,
Volume 22, Issue 67 (12-2022)
Abstract

Abstract
Although decades have passed since the introduction of a sustainable agricultural approach in the country, But the agricultural system is based on the use of non-native technologies, use of chemical inputs and Excessive exploitation of nature and Therefore, the formation and development of sustainable agriculture has faced major challenges. In this research, the researchers, considering the importance of agricultural sustainability especially in rural areas of the country and its role in maintaining the basic resources, considered the issue of agricultural sustainability In the villages of the central district of kuhdasht county and have studied and analyzed the agricultural sustainability gap in this region. For this purpose, 20 villages were selected by stratified random sampling method based on the location of the villages (plain, mountainous, and foothills), indicators of agricultural sustainability were developed and After completing the questionnaires by agricultural users, coding and data entry were performed in Excel and SPSS. Then, using the TOPSIS multivariate decision analysis, the studied villages were classified based on agricultural sustainability and They were classified into four clusters (Stable, semi-stable, unstable and very unstable) using cluster analysis. The results of the study showed that the agricultural sustainability level in the villages of this region is unbalanced in ecological, social and economic dimensions. This imbalance was seen both in the rural districts and at the level of studied villages.
Mr Alireza Thernasab, Dr Leila Ebrahimi, Dr Ameneh Haghzad, Dr Mehrdad Ramezan Por,
Volume 23, Issue 71 (12-2023)
Abstract

Today, urban and rural planning and management programs need to obtain accurate spatial information at successive times about land use changes. The main purpose of this study is to study and evaluate land use changes due to physical development with respect to 4 land uses in Bayer, agricultural lands, water zones and man-made lands in Pakdasht. Data were collected through Landsat satellite images from 2019 and 1989 captured by OLI and MSS5 sensors with a resolution of 30 m, which transformed Landsat 8 and 7 satellite images to 15 m in ENVI 5.3 software. These images were classified in ENVI 5.3 software based on the maximum likelihood algorithm. Then the accuracy of the maps obtained from the maximum likelihood algorithm was estimated. Fragstats software was then used to extract land cover metrics at two levels of the classroom and the simulator. A total of 15 landslides were quantified in the years 1989 to 2019 (1368-1688). According to the results, the area of ​​residential land has increased during the years under study so that its share has increased from %7.1 in the region to %19.5.


 
Dana Rahimi, Javad Khoshhal Dastjerdi, Dariush Rahimi,
Volume 24, Issue 74 (9-2024)
Abstract

Among natural disasters, floods have the highest human toll. The economic impacts of floods are greater in developing countries, including Iran, and are particularly severe in the colder months of the year in the west of the country. The purpose of the present study is to analyze the most severe historical synoptic floods that occurred in Karkheh Basin  (1 April, 2019). Descriptive - analytical research method and its environmental approach into circulation. Analysis of synoptic systems of large floods such as the April 12, 2019 floods show that Western Europe's high-pressure systems, Black sea, East of the Caspian and low pressure north of the Red Sea, Eastern Mediterranean in harmony with the high-rise systems of Western Europe, Low Mediterranean East with a temperature drop of about 50 degrees Celsius(The temperature at sea level In the eastern Mediterranean and Red Sea about 25 degrees Celsius and in the middle of the atmosphere -25 degrees Celsius) also the climb Humidity from the Arabian Sea, North Indian Ocean, Red Sea, Oman Sea and Persian Gulf and Along with Mid-width cold air loss On the area and the establishment of the Polar jet stream) Core up to 70 m(And the establishment of the front jet stream And positive rotation area On the area shows the structure of the synoptic systems causing the flood in the area.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb