The cognition of cropping pattern is important for planning and resource management .Remote sensing as a science and technology of spatial information and geographic information system due to having the analytical facilities can play a key role in determining the distribution of crops and their lands under cultivation. In this research, in order to identify and separate the lands under cultivation of the dominant crops in Lenjanat of Isfahan province, the multi-temporal images of Landsat 8 satellite, OLI sensor were used in the dates of April 17, July 6, and August 23 in 2016. Using maximum likelihood classification and normalized difference vegetation index (NDVI) of the agriculture crops in different periods of growth and according to their cropping calendar, the map of the cropping pattern of the area was determined. To evaluate the accuracy of the results, the produced maps were examined with reference data. Kappa coefficient and overall accuracy were 0.88 and 90%, respectively, in maximum likelihood classification, and 0.90 and 93%, respectively, in NDVI. Furthermore, statistics presented by Agricultural Jihad Organization of Isfahan province in the 2015-2016 crop year was used for evaluation. The results showed that there were differences equal to 10.2%, 18.6% and 1.8%, in the area under cultivation of wheat and barley, rice, and potato and forage, respectively, in maximum likelihood classification, comparing with the statistics of Agriculture Jihad while the results of NDVI comparing with Jihad statistics showed the errors equal to 6.6 %, 6.5 % and 3.2%, respectively, that indicated the better performance of temporal vegetation indices in estimation of area under cultivation according to its phenology. Investigation of land use and cropping pattern of this area indicate a high centralization of agricultural lands with high water requirements and industries on the proximity of Zayanderud River which necessitates the spatial analysis of land use in this area.
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |