Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 204-219 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

karampour M, khamoshian sahneh Y, ebrahimi Z, heidari H. (2025). Correlation between the NAO index and the occurrence of ARs in Iran. jgs. 25(78), 204-219. doi:10.61186/jgs.25.78.5
URL: http://jgs.khu.ac.ir/article-1-4140-en.html
1- University of Lorestan, University of Lorestan , mostafa_karampoor@yahoo.com
2- University of Lorestan, University of Lorestan
3- msc of climatology, University of golestan, University of golestan
Abstract:   (4527 Views)
Atmospheric rivers are one of the atmospheric phenomena that generate heavy rainfall and can lead to significant human and financial losses. Understanding the synoptic mechanisms of water vapor flux and atmospheric river formation in the country's atmosphere, as well as revealing the interaction between the NAO (North Atlantic Oscillation) zonal component and the creation and intensification of this atmospheric phenomenon, can greatly improve the predictability of torrential rainfall events. The main goal of this research is to investigate the atmospheric river phenomenon in the Iranian atmosphere and its relationship with the phases of the NAO phenomenon. In this regard, data on the zonal and meridional components of wind, specific humidity, and NAO anomalies were obtained from the NOAA database during the statistical period of 1944–2019. The results showed that during the study period, atmospheric rivers have shifted in terms of longitude and latitude, moving toward the southern half of Iran. A high correlation was observed between the NAO index and meridional flows at levels above 600 hectopascals. Additionally, a sigma value of 0.2101 indicated a strong correlation with the NAO in the area where atmospheric rivers enter the Iranian atmosphere.  High-pressure centers play an important role in directing atmospheric rivers. These rivers cannot pass through high-pressure centers and typically exhibit meridional curvature at the outer borders of these centers in the Northern Hemisphere, resulting in southwest and northeast orientations. The primary moisture source for atmospheric rivers entering Iran is the Atlantic Ocean, which is further enhanced by water bodies such as the Red Sea, the Sea of Oman, the Indian Ocean, and the Persian Gulf.
Full-Text [PDF 2213 kb]   (9 Downloads)    
Type of Study: Research | Subject: climatology

References
1. Akbary, M., Salimi, S., Hosseini, SA., and Hosseini M., (2019), Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region, Int J Climatol,1-11. https://doi. org/10.1002/joc.6052. [DOI:10.1002/joc.6052]
2. Baggett, C., Sukyoung Lee, S., and Feldstein, S., (2016), An Investigation of the Presence of Atmospheric Rivers over the North Pacific during Planetary-Scale Wave Life Cycles and Their Role in Arctic Warming, Journal of the Atmospheric Sciences,73(11):4329-4347. https://doi.org/10.1175/JAS-D-16-0033.1 [DOI:10.1175/JAS-D-16-0033.1.]
3. Champion, A.J., Allan, R.P., and Lavers D.A., (2015), Atmospheric rivers do not explain UK summer extreme rainfall, Geophysical Research: Atmospheres, 120: 6731-6741 . [DOI:10.1002/2014JD022863]
4. Debbage, N., Miller, P., Poore, S., Morano, K., Mote, T., and Sheppard, JM., (2017), A climatology of atmospheric river interactions with the southeastern United States coastline, Climatol,37:4077-4091. [DOI:10.1002/joc.5000]
5. Dettinger, M., (2013), Atmospheric Rivers as Drought Busters on the U.S. West Coast, Hydrometeor, 14, 1721-1732. https://doi.org/10.1175/JHM-D-13-02.1 [DOI:10.1175/JHM-D-13-02.1.]
6. Gimeno, L., Dominguez, F., Nieto, R., Trigo, R. M., Drumond, A., Reason, C., and Marengo, J., (2016), Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Env. Resour, 41, 117-141. https://doi.org/10.1146/annurev-environ-110615-085558 [DOI:10.1146/annurev-environ-110615-085558.]
7. Kerr, R.A., (2006), Rivers in the sky are flooding the world with tropical waters,Science, 313(5786), 435. https://doi.org/10.1126/science.313.5786.435 [DOI:10.1126/science.313.5786.435.] [PMID]
8. Lavers, D.A., and Villarini G., (2015), The contribution of atmospheric rivers to precipitation in Europe and the United States. Hydrology, 522: 382- 390. [DOI:10.1016/j.jhydrol.2014.12.010]
9. Lavers, D.A., Allan, R., Villarini, G., Lloyd-Hughes, B., Brayshaw D., and Wade A., (2013), Future changes in atmospheric rivers and their implications for winter flooding in Britain, Environmental Research Letters, 8:1-8. [DOI:10.1088/1748-9326/8/3/034010]
10. Lagrange, J.-L.,( 1868), Mémoire sur la théorie du mouvement des fluides (in: Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, année 1781. Oevres de Lagrange, Tome IV, pp. 695-748.
11. National Research Council., ( 1991), Opportunities in Hydrologic Sciences, National Academy Press. 348 p.
12. National Research Council., (1999), The GEWEX Global Water Vapor Project (GVaP), USA.
13. Neiman, P.J., Ralph, F.M.,, and Wick, G.A., (2008) ., Meteorological characteristics and overland precipitation impacts of ARS affecting the west coast of North America based on eight years of SSM/I satellite observations, Journal of Hydrometeorology, 9(1), 22-47. https://doi.org/10.1175/2007JHM855.1 [DOI:10.1175/2007JHM855.1.]
14. Newell, R.E., Newell, N.E., Zhu, Y., and Scott, C., (1992), Tropospheric rivers? a pilot study, Geophysical Research Letters, 19(24), 2401-2404. https://doi.org/10.1029/92GL02916 [DOI:10.1029/92GL02916.]
15. Ralph, F.M., Coleman, T., Neiman, P.J., Zamora R.J., and Dettinger M.D., (2013), Observed impacts of duration and seasonality of atmosphericriver landfalls on soilmoisture and runoff in coastal northern California, Hydrometeorology, 14: 443-459 . [DOI:10.1175/JHM-D-12-076.1]
16. Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander, J., (2018), Defining atmospheric river: How the Glossary of Meteorology helped resolve a debate, Bull. Amer. Meteor. Soc, 99, 837-839, [DOI:10.1175/BAMS-D-17-0157.1]
17. Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M. D., Reynolds, M., Schick, and C. Smallcomb, L. J., (2019), A Scale to Characterize the Strength and Impacts of Atmospheric Rivers, Bull. Amer. Meteor, Soc, 100, 269-289, https://doi.org/10.1175/BAMS-D-18-0023.1 [DOI:10.1175/BAMS-D-18-0023.1.]
18. Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B., (2006), Flooding on California's Russian River: role of atmospheric rivers, Geophysical Research Letters, 33(13), L13801. https://doi.org/10.1029/2006GL026689 [DOI:10.1029/2006GL026689.]
19. Ramos, AM., Trigo, RM., Tomé, R., and Liberato MLR., (2018), Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands, Atmosphere, 9(8):325. [DOI:10.3390/atmos9080325]
20. Rutz, J J., Steenburgh, W J., Ralph, F M., (2014), Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States, Monthly Weather Review, 142(2):905-921.DOI: 10.1175/MWR-D-13-00168.1. [DOI:10.1175/MWR-D-13-00168.1]
21. Ryoo, J M., Duane, E., Waliser, D E., Sun Wong, S., Eric, J., Fetzer, E J., and Fung, I., (2015), Classification of atmospheric river events on the U.S. West Coast using a trajectory model, JGR Atmospheres, 120(8): 3007-3028. https://doi.org/10.1002/2014JD022023 [DOI:10.1002/2014JD022023.]
22. Salimi, S., Salighe, M., (2016), The effects of atmospheric rivers on Iran climate, Physical Geography Research Quarterly, 48(2), 247-264. Doi: 10.22059/JPHGR.2016.59366.
23. Smith, B L., Yuter, S E., (2010), Water Vapor Fluxes and Orographic Precipitation over Northern California Associated with a Landfalling Atmospheric River, Monthly Weather Review, 138(1): 74-100. https://doi.org/10.1175/2009MWR2939.1 [DOI:10.1175/2009MWR2939.1.]
24. Stohl, A., Forster, C., and Sodermann, H., (2008), Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-a tale of hurricanes and an atmospheric river, Geophysical Research, 113, 1-13. https://doi.org/10.1029/2007JD009006 [DOI:10.1029/2007JD009006.]
25. Stokes, G.G., (1842), On the steady motion of incompressible fluids, Transactions of the Cambridge Philosophical Society, 7: 439-453, Bibcode:1848TCaPS...7..439S Stokes, G.G., (1880), Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 1-16
26. White, A.B., Gottas, D.J., Henkel, A.F., Neiman, P.J., Ralph, F.M., and Gutman, S.I., (2010), Developing a performance measure for snow-level forecasts. Journal of Hydrometeorology, 11, 739-753. [DOI:10.1175/2009JHM1181.1]
27. Zhu, Y., and Newell, R.E., (1994), ARS and bombs, Geophysical Research Letters, 21(18), 1999-2002. https://doi.org/10.1029/94GL01710 [DOI:10.1029/94GL01710.]
28. Zhu, Y., and Newell, R.E., (1998), A proposed algorithm for moisture fluxes from atmospheric rivers, Monthly Weather Review, 126(3), 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 [DOI:10.1175/1520-0493(1998)1262.0.CO;2]
29. Akbary, M., Salimi, S., Hosseini, SA., and Hosseini M., (2019), Spatio-temporal changes of atmospheric rivers in the Middle East and North Africa region, Int J Climatol,1-11. https://doi. org/10.1002/joc.6052. [DOI:10.1002/joc.6052]
30. Baggett, C., Sukyoung Lee, S., and Feldstein, S., (2016), An Investigation of the Presence of Atmospheric Rivers over the North Pacific during Planetary-Scale Wave Life Cycles and Their Role in Arctic Warming, Journal of the Atmospheric Sciences,73(11):4329-4347. https://doi.org/10.1175/JAS-D-16-0033.1 [DOI:10.1175/JAS-D-16-0033.1.]
31. Champion, A.J., Allan, R.P., and Lavers D.A., (2015), Atmospheric rivers do not explain UK summer extreme rainfall, Geophysical Research: Atmospheres, 120: 6731-6741 . [DOI:10.1002/2014JD022863]
32. Debbage, N., Miller, P., Poore, S., Morano, K., Mote, T., and Sheppard, JM., (2017), A climatology of atmospheric river interactions with the southeastern United States coastline, Climatol,37:4077-4091. [DOI:10.1002/joc.5000]
33. Dettinger, M., (2013), Atmospheric Rivers as Drought Busters on the U.S. West Coast, Hydrometeor, 14, 1721-1732. https://doi.org/10.1175/JHM-D-13-02.1 [DOI:10.1175/JHM-D-13-02.1.]
34. Gimeno, L., Dominguez, F., Nieto, R., Trigo, R. M., Drumond, A., Reason, C., and Marengo, J., (2016), Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events, Annu. Rev. Env. Resour, 41, 117-141. https://doi.org/10.1146/annurev-environ-110615-085558 [DOI:10.1146/annurev-environ-110615-085558.]
35. Kerr, R.A., (2006), Rivers in the sky are flooding the world with tropical waters,Science, 313(5786), 435. https://doi.org/10.1126/science.313.5786.435 [DOI:10.1126/science.313.5786.435.] [PMID]
36. Lavers, D.A., and Villarini G., (2015), The contribution of atmospheric rivers to precipitation in Europe and the United States. Hydrology, 522: 382- 390. [DOI:10.1016/j.jhydrol.2014.12.010]
37. Lavers, D.A., Allan, R., Villarini, G., Lloyd-Hughes, B., Brayshaw D., and Wade A., (2013), Future changes in atmospheric rivers and their implications for winter flooding in Britain, Environmental Research Letters, 8:1-8. [DOI:10.1088/1748-9326/8/3/034010]
38. Lagrange, J.-L.,( 1868), Mémoire sur la théorie du mouvement des fluides (in: Nouveaux Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, année 1781. Oevres de Lagrange, Tome IV, pp. 695-748.
39. National Research Council., ( 1991), Opportunities in Hydrologic Sciences, National Academy Press. 348 p.
40. National Research Council., (1999), The GEWEX Global Water Vapor Project (GVaP), USA.
41. Neiman, P.J., Ralph, F.M.,, and Wick, G.A., (2008) ., Meteorological characteristics and overland precipitation impacts of ARS affecting the west coast of North America based on eight years of SSM/I satellite observations, Journal of Hydrometeorology, 9(1), 22-47. https://doi.org/10.1175/2007JHM855.1 [DOI:10.1175/2007JHM855.1.]
42. Newell, R.E., Newell, N.E., Zhu, Y., and Scott, C., (1992), Tropospheric rivers? a pilot study, Geophysical Research Letters, 19(24), 2401-2404. https://doi.org/10.1029/92GL02916 [DOI:10.1029/92GL02916.]
43. Ralph, F.M., Coleman, T., Neiman, P.J., Zamora R.J., and Dettinger M.D., (2013), Observed impacts of duration and seasonality of atmosphericriver landfalls on soilmoisture and runoff in coastal northern California, Hydrometeorology, 14: 443-459 . [DOI:10.1175/JHM-D-12-076.1]
44. Ralph, F. M., Dettinger, M. D., Cairns, M. M., Galarneau, T. J., and Eylander, J., (2018), Defining atmospheric river: How the Glossary of Meteorology helped resolve a debate, Bull. Amer. Meteor. Soc, 99, 837-839, [DOI:10.1175/BAMS-D-17-0157.1]
45. Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M. D., Reynolds, M., Schick, and C. Smallcomb, L. J., (2019), A Scale to Characterize the Strength and Impacts of Atmospheric Rivers, Bull. Amer. Meteor, Soc, 100, 269-289, https://doi.org/10.1175/BAMS-D-18-0023.1 [DOI:10.1175/BAMS-D-18-0023.1.]
46. Ralph, F.M., Neiman, P.J., Wick, G.A., Gutman, S.I., Dettinger, M.D., Cayan, D.R., and White, A.B., (2006), Flooding on California's Russian River: role of atmospheric rivers, Geophysical Research Letters, 33(13), L13801. https://doi.org/10.1029/2006GL026689 [DOI:10.1029/2006GL026689.]
47. Ramos, AM., Trigo, RM., Tomé, R., and Liberato MLR., (2018), Impacts of Atmospheric Rivers in Extreme Precipitation on the European Macaronesian Islands, Atmosphere, 9(8):325. [DOI:10.3390/atmos9080325]
48. Rutz, J J., Steenburgh, W J., Ralph, F M., (2014), Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States, Monthly Weather Review, 142(2):905-921.DOI: 10.1175/MWR-D-13-00168.1. [DOI:10.1175/MWR-D-13-00168.1]
49. Ryoo, J M., Duane, E., Waliser, D E., Sun Wong, S., Eric, J., Fetzer, E J., and Fung, I., (2015), Classification of atmospheric river events on the U.S. West Coast using a trajectory model, JGR Atmospheres, 120(8): 3007-3028. https://doi.org/10.1002/2014JD022023 [DOI:10.1002/2014JD022023.]
50. Salimi, S., Salighe, M., (2016), The effects of atmospheric rivers on Iran climate, Physical Geography Research Quarterly, 48(2), 247-264. Doi: 10.22059/JPHGR.2016.59366.
51. Smith, B L., Yuter, S E., (2010), Water Vapor Fluxes and Orographic Precipitation over Northern California Associated with a Landfalling Atmospheric River, Monthly Weather Review, 138(1): 74-100. https://doi.org/10.1175/2009MWR2939.1 [DOI:10.1175/2009MWR2939.1.]
52. Stohl, A., Forster, C., and Sodermann, H., (2008), Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N-a tale of hurricanes and an atmospheric river, Geophysical Research, 113, 1-13. https://doi.org/10.1029/2007JD009006 [DOI:10.1029/2007JD009006.]
53. Stokes, G.G., (1842), On the steady motion of incompressible fluids, Transactions of the Cambridge Philosophical Society, 7: 439-453, Bibcode:1848TCaPS...7..439S Stokes, G.G., (1880), Mathematical and Physical Papers, Volume I, Cambridge University Press, pp. 1-16
54. White, A.B., Gottas, D.J., Henkel, A.F., Neiman, P.J., Ralph, F.M., and Gutman, S.I., (2010), Developing a performance measure for snow-level forecasts. Journal of Hydrometeorology, 11, 739-753. [DOI:10.1175/2009JHM1181.1]
55. Zhu, Y., and Newell, R.E., (1994), ARS and bombs, Geophysical Research Letters, 21(18), 1999-2002. https://doi.org/10.1029/94GL01710 [DOI:10.1029/94GL01710.]
56. Zhu, Y., and Newell, R.E., (1998), A proposed algorithm for moisture fluxes from atmospheric rivers, Monthly Weather Review, 126(3), 725-735. https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 [DOI:10.1175/1520-0493(1998)1262.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)