دوره 13، شماره 30 - ( 9-1392 )                   جلد 13 شماره 30 صفحات 169دوره151فصل__Se | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

گلابی محمدرضا، آخوندعلی علی محمد، رادمنش فریدون. مقایسه عملکرد الگوریتم های مختلف شبکه عصبی مصنوعی در مدل سازی بارندگی فصلی مطالعه موردی؛ ایستگاه های منتخب استان خوزستان تحقیقات کاربردی علوم جغرافیایی 1392; 13 (30) :169-151

URL: http://jgs.khu.ac.ir/article-1-1627-fa.html


1- کارشناسی ارشد مهندسی منابع آب، دانشگاه شهید چمران اهواز ، hamid_golabi65@yahoo.com
2- استاد گروه هیدرولوژی و منابع آب، دانشگاه شهید چمران اهواز،
3- استادیار گروه هیدرولوژی و منابع آب، دانشگاه شهید چمران اهواز،
چکیده:   (7119 مشاهده)
بارندگی یکی از اجزای اصلی چرخه­ی هیدرولوژی است. این فرآیند پیچیده به عوامل متعدد اقلیمی وابسته است. شبکه های عصبی مصنوعی در چند دهه اخیر و در مطالعات صورت گرفته برای مدل سازی سیستم های پیچیده و غیر خطی قابلیت بسیار بالایی از خود نشان داده است. تحقیق حاضر در سه ایستگاه منتخب از استان خوزستان صورت گرفته است. برای این منظور از داده­های بارندگی ماهانه سه ایستگاه هواشناسی استان به مدت 48سال، (1340-1387)، استفاده شده است. سپس با استفاده از این مقادیر به عنوان خروجی­های هدف، شبکه­های مختلفی با ساختار­های متفاوت تعریف و آموزش داده شد. در نهایت قابلیت شبکه برای تخمین بارش با استفاده از قسمتی از داده­ها که در آموزش شبکه وارد نشدند، مورد بررسی قرار گرفت. در این تحقیق شبکه­های MLP و RBF با تغییراتی در تعداد لایه­های میانی، تعداد نرون­ها و الگوریتم­های آموزش  MOMو LM وCG  به منظور پیش­بینی بارش فصلی به کار گرفته شد. نتایج نشان داد که برای ایستگاه اهواز شبکه RBF با توپولوژی 1-4-6 و یادگیریLM  دارای بیشترین مقدار ضریب همبستگی برابر 96/0 و کمترین MSE برابر 044/0 است. برای ایستگاه آبادان شبکه RBF با توپولوژی 1-7-6-6 و یادگیریLM  دارای بیشترین مقدار ضریب همبستگی برابر 92/0 و کمترین MSE برابر 062/0 است. برای ایستگاه دزفول شبکه MLP با توپولوژی 1-4-3-6 و یادگیریLM  دارای بیشترین مقدار ضریب همبستگی برابر 94/0 و کمترین MSE برابر 034/0 است.  
متن کامل [PDF 394 kb]   (21433 دریافت)    
نوع مطالعه: گزارش مورد |

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وبگاه متعلق به تحقیقات کاربردی علوم جغرافیایی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Applied Researches in Geographical Sciences

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)