Search published articles


Showing 7 results for Physical

R Ajalloeian, M Mohammadi,
Volume 5, Issue 1 (9-2011)
Abstract

Abstract
(Paper pages 1059-1076)
Physical and mechanical properties of intact rocks are very important in civil engineering works that interact with rock such as underground structures, dams,foundations on rock, and rock slopes. Therefore geomechanical parameters such as compression strength and deformation modulus of rock can have fundamental importance in the different stages of design. Determination of these parameters is time consuming and costly. Since Asmary formation has broad outcrop in the west and southwest of Iran and many large projects are located in this formation, therefore it is a requirement to accomplish the present research. This paper is dealing to analyzing data from laboratory of two major projects of the Khersan 1 and 2 dam sites. In this regard, the physical, mechanical, dynamic and durability properties of intact rock and geology controlling agents of these changes has been evaluated and analyzed. Finally, new experimental relations between different parameters have been presented.
Mohammad Hossein Ghobadi, Mehrdad Amiri, Farhad Aliani,
Volume 14, Issue 1 (5-2020)
Abstract

Because of the diversity in petrography, peridotites have variable physical and mechanical properties. For this reason, knowledge of resistance properties and their deformation will help with the prediction of engineering behavior of these rocks. Due to the large spread of igneous rocks, especially peridotite, in Zagros, northeastern and central Iran, special attention has been paid to their petrographic, physical and mechanical characteristics. The construction of the structure within or on the peridotites and the choice for the purpose of the stone borrow depends on the recognition of its engineering geology characteristics. In this paper, in addition to the field and laboratory study, the geological characteristics of peridotite engineering has been investigated.                                    
Material and methods                    
In order to study the geological characteristics of the peridotites of Harsin region, 15 suitable blocks were selected and transferred to the laboratory. Accordingly, from collected rock samples, 150 cylindrical cores of diameter 54 mm were prepared and physical and mechanical tests were performed according to (ISRM, 2007) and (ASTM, 2001) guidelines. In this research, after sampling of the study area and preparing the core for the lithological characteristics of the samples by providing thin sections of them with polarizing microscopy was studied.
Results and discussion
By considering the results of laboratory tests and analysis from Harsin peridotites in Kermanshah province, we can acclaim that with increasing the percentage of minerals in olivine and pyroxene in rock, the strength was decreased and the levels weaknesses, which is due to the weak structure of the mineral-olivine and pyroxene. According to the physical properties test and Anon classification, the porosity percentage in porosity percentage is low and as a result the amount of water absorption index is low. Based on the Gamble classification, all peridotites are very resistant to durability and based on the Franklin and Chandra classification, all samples are extremely resistant. The results of this study showed that the single axial compressive strength, elasticity modulus, point load index and tensile strength were decreased with an increase in humidity content of peridotite samples. This is due to the fact that with the increase of humidity pore pressure of water increases. According to the Anon classification, the peridotites are very high in terms of the length of the longitudinal passage through the rock. The highest compliance between the Brazilian Tensile strength test (BTS) and Schmidt hammer (SHV) was achieved in the dry condition and the determination coefficient (R2) equals to 0.95 was obtained. Also there is an acceptable relation between the Brazilian Tensile Strength Test (BTS) and the dry volume unit weight (γd) with the determination coefficient (R2) of 0.93. In addition, there is an admissible relationship between durability test and single-axial compressive strength, with a coefficient determination (R2) of 0.94. Regarding the obtained regressions in this study, the physical and mechanical properties show good agreement and most of the equations have an acceptable coefficient determination.
Reza Ahmadi, Zahra Baharloueie,
Volume 15, Issue 1 (5-2021)
Abstract

In Yazd Darreh-Zereshk copper deposit geophysical data containing magnetic, resistivity and induced polarization have been surveyed and 25 boreholes have been drilled in the area. In the present research, inversion and processing of geophysical data as well as their qualitative and quantitative accordance with boreholes assay data have been carried out. To achieve the goal first, total magnetic intensity map after applying necessary filters and processing, was mapped to identify surface and deep expansion of anomalies on it. Drawing the anomaly profile of magnetic stations surveyed along 4 geoelectric profiles shows that most of the magnetic anomaly zones have high chargeability and low resistivity that indicates the qualitative compatibility of magnetic and geoelectric data, as a result increasing the probability of mineralization in the area. Afterward  on the basis of qualitative interpretation of geoelectrical sections, optimal locations of drilling on the each profile were proposed. Plotting mineral deposit cross-section along the geoelectrical profiles using the boreholes assay data, revealed that drilling of some boreholes located on the geophysical profiles haven’t been based on the results of geophysical operation, carried out without any right logic, purpose and design. In general, the qualitative accordance of the results of geoelectrical operation with the boreholes assay data showed a pretty good qualitative accordance. Also investigation of linear correlation coefficient value between inverted geophysical data and borehole assay in a specific same range after a same definite gridding and interpolation of their values, overall indicated a relatively good quantitative accordance (between 0.4 and 0.7)../files/site1/files/151/1.pdf

Mohadeseh Sadeghi, Naser Hafezi Moghads, Mohammad Ghafoori, Mehrdad Amiri, Ali Bashari,
Volume 16, Issue 2 (9-2022)
Abstract

 The design of underground or terrestrial structures on the rock bed depends on the physical and mechanical properties. Considering the mining method in Tabas coal mine extraction method is long and destructive, the evaluation of the geomechanical properties of the rocks is more necessary. In this research, the characteristics of the rock units of the eastern tunnel No. 3 of Tabas coal Pervadeh mine were investigated. In this study, 3 samples of shale, sandstone and mudstone were examined.  Considering the importance of the subject in this research, new experimental relations have been proposed, and their application shows desirable results. In order to obtain geomechanical characteristics and empirical relationships, physical tests such as porosity, water absorption percentage, unit volume weight, and mechanical properties such as uniaxial compressive strength, point load index, Brazilian tensile strength, direct cutting test, durability and brittleness index were carried out. To achieve the desired objective, the most appropriate relationships are presented using the regression method. Statistical analysis shows good correlation between different parameters in shale, sandstone and mudstone samples.
 

, , , ,
Volume 17, Issue 1 (3-2023)
Abstract

Waste management is a cornerstone of societal needs. The volume and composition of waste dictate the available disposal options, with landfill being a primary method. The selection of landfill sites is critically dependent on site characteristics and requires thorough and ongoing evaluation, particularly in the areas of water and soil contamination. This study started with geoelectrical and geochemical investigations in the vicinity of the landfill in the city of Damavand. It included 24 geoelectric soundings using the Schlumberger array, organized into 4 profiles covering three intervals. In parallel, three water samples, five soil samples and one leachate sample from two intervals were collected for laboratory analysis. Analyses revealed soil contamination at the waste accumulation site to a depth of two meters with a southerly extent. In particular, a cementitious layer prevents leachate from penetrating deeper into the soil. This, together with a very deep groundwater table, ensures that groundwater contamination is currently and in the foreseeable future prevented. Additional factors such as the depth of the groundwater table, the thickness of the unsaturated zone, the short life of the landfill, reduced rainfall and increased evaporation limit the volume of leachate. The pH of the leachate tends to be alkaline during dry periods and acidic during wet periods. Currently, parameters such as EC, TDS and various ionic and metallic concentrations remain within acceptable limits, ensuring minimal environmental impact.

Mr. Farhad Mollaei, Dr. Reza Mohebian, Dr. Ali Moradzadeh,
Volume 18, Issue 3 (12-2024)
Abstract

The brittlenessindex is one of the most important parameters in geomechanical analysis and modeling. Many methods have been proposed to estimate the brittleness index. One of the recently used methods is the  intelligent method. In this paper, firstly the aim is to introduce a new algorithm using deep learning algorithms to predict the brittleness index in one of the wells of the hydrocarbon field in southwest Iran. In this article, first, the effective features for the input of the algorithms were determined using Pearson's correlation coefficient, and then using (recurrent neural network + multi-layer perceptron neural network) (LSTM + MLP) and (convolutional neural network + recurrent neural network) (CNN+ LSTM) brittleness index was estimated and the mean error value (MSE) and coefficient of determination (R2) were calculated for the training and test data. For both training and test data, both algorithms have a coefficient of determination close to 1 and a very low error. Also, in order to ensure the results of the algorithms, a part of the data was set aside as blind data, and the error and coefficient of determination were calculated for this data, and the error was MSE CNN+LSTM =26.0425,  MSE LSTM+MLP =32.0751  and the coefficient of determination was R2 CNN+LSTM  =0.8064,  R2 LSTM+MLP  =0.7615 . The results show the effectiveness of the introduced deep learning algorithms as a new method in predicting the brittleness index, and comparing the two algorithms presented, the CNN+LSTM algorithm has higher accuracy and less error.

Dr Eisa Hajiradkouchak, Dr Behzad Rahnama, Dr Hasan Nasrollahzadeh, Mr Ali Shahbazi, Mr Reza Raeiji, Mr Kazem Babaei,
Volume 18, Issue 3 (12-2024)
Abstract

Many researchers believe that providing safe water, sanitary disposal and optimal management are the three axes of health, and in all these cases, while paying attention to the process of doing work, continuous control should also be done. This study was designed and implemented with the aim of seasonally investigating the physicochemical and microbial water quality of Qarasu River in Golestan province using the IRWQIsc index. 6 sampling stations were identified for Qarasu River and sampling was done once every month in four seasons of 1400. The measured parameters include pH, BOD, COD, dissolved oxygen (DO), electrical conductivity (EC), ammonium (NH4), nitrate (NO3), phosphate (PO4), total hardness (TH), turbidity and total suspended solids. It was a stool form. According to the measured parameters, Iran's surface water quality index IRWQISC was calculated. The results of the study based on the index showed that the quality of this index for all stations in all seasons was between 70.5 and 14.7 and according to the IRWQISC index, it was in five good categories (70-1.85), relatively good. (55-1/70), relatively bad (30-44-9), bad (15-29-9) and very bad (less than 15). The influencing parameters were total suspended solids, turbidity, nitrate, temperature and fecal coliform. It can be concluded that the amount of 70.5 with good quality is related to (Tuskestan village) in winter and the amount of 7.14 with very bad quality is related to (Pol Qara Tepe) in summer that the quality of the river water in The Gorgan to Aqqla road bridge station (Qorban Abad) is in bad condition in all seasons due to the entry of urban and industrial pollutants into this station, and Tuskestan village station has good and relatively good quality in most seasons because Tuskestan is in It is located in high altitudeand the entrance of clean running water  into thisarea is more and it is far from industrial and urban pollutants.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb