Search published articles


Showing 5 results for Environment


Volume 1, Issue 1 (7-2003)
Abstract

Core samples from the sediments of the Dee Estuary were collect-ed from the chosen sites to study the distribution of pesticides in the sediments. The organic compounds were extracted by a microwave sample preparation system from 56 sediment samples and gas chromatography. Mass spectrometry (GC-MS) was employed for the organic compound analysis. Distribution of n-alkanes in the analysed sediments and calculation of their carbon preference index indicate a continental source for the organic compounds in all samples. Different search strategies were applied to find pesticides in the sediments. Maneb was the only pesticide found in the samples. The distribution of Maneb showed a zigzag pattern with depth in all the four studied areas in the Dee estuary, corresponding to the pattern of distribution of total organics. The highest concentration level of Maneb was 16.33 ng/g of sediment at a depth of 14 cm. The distribution of Maneb with depth is attributed to the seasonal application and release to the environment
Sahar Rezaian, Seyed Ali Jozi, Sadaf Ataee,
Volume 10, Issue 2 (11-2016)
Abstract

Objective of the present research is to identify, analyze, and assess risk of Paveroud Dam during construction phase. Following collection and analysis of the information related to environmental conditions of the area of study and technical specifications of dam construction, a list of probable risk factors was prepared in the form of a questionnaire, and for verification, the questionnaires were provided to a group of specialists consisting of elites and professors specialized at the disciplines relevant to environment and civil engineering. Number of questionnaires was determined based on Cochran’s formula. In the first step, the expert group in the research was asked to score in Likert scale format so as to analyze the acquired responses and the risks present in the region. Having analyzed the scores using the findings of PHA method, TOPSIS technique was applied to prioritize the identified risks of Paveroud Dam. The results indicated that erosion had the highest priority among 36 risk factors. After prioritization among the risk factors, risk was also assessed using RAM-D technique in which “impact on Sorkhabad Protected Zone with 9 scores, “erosion” with 6 scores, and “work at high elevation” with 3 scores were recognized as three major risks of Paveroud Dam. In order to mitigate the effects of dam risks during construction phase, environmental management planning is crucial, and for this purpose, risk mitigation choices were recommended at the end aimed at coping with the identified risks.


, , Morteza Jiriaei Sharahi,
Volume 15, Issue 4 (12-2021)
Abstract

Soil stabilization and reinforcement has long played an important role in civil engineering, especially in geotechnics, and over time and the need for a more robust and stable ground to withstand gravity and higher shear forces, has become particularly important. Also, in recent years, with the entry of the environment into the construction industry, with the aim of reducing the adverse effects of industrial waste and construction waste on people's living environment and preserving the environment for the future, in many cases reduces the economic costs of projects. In this research, granular soil is reinforced in two loose and semi-dense states using a waste material called ethylene-vinyl acetate (EVA). The experiments were performed without adding moisture, by weight percentage method and using CBR device. The results show that soil resistance increases significantly with the use of these additives and its effect on soil increases with decreasing soil specific gravity. Also, the optimal amount of additives in loose and semi-dense state is 2% additive and 1% additive, respectively.


./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D9%85%D8%A8%D8%B3%D9%88%D8%B7_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C_%D8%B3%D9%87_%D8%B5%D9%81%D8%AD%D9%87_%D8%A7%DB%8C.pdf
Hossein Sarbaz, Ali Neysari Tabrizi,
Volume 16, Issue 4 (12-2022)
Abstract

In recent years, the use of environmentally friendly microorganisms and biopolymers in geotechnical activities, especially in soil improvement, has received much attention. This is in order to reduce the harmful environmental effects caused by the use of traditional and industrial materials, including cement. Therefore, it seems to be necessary to study the effects of environmentally friendly biopolymers from different points of view, including environmental issues, soil erosion and the factors that influence the geotechnical parameters of the different deposits. The purpose of this article is to review the studies carried out on the use of guar gum. As a green additive from an environmental point of view and the factors that influence the mechanical parameters of soils treated with this biopolymer. The advantages and disadvantages of guar gum from an environmental point of view, as well as the effects of this additive on different soils, are the subject of discussion. Geotechnical parameters such as the unconfined compressive strength, the shear strength, the erosion resistance and the durability of the soils treated with guar gum will be evaluated. The influence of the guar gum parameters in relation to the concentration of the biopolymer guar gum, the moisture conditions, the temperature and the processing time will then be discussed. Finally, the potential opportunities and challenges for the use of guar gum in the geotechnical field will be presented.
 

, , , ,
Volume 17, Issue 1 (3-2023)
Abstract

Waste management is a cornerstone of societal needs. The volume and composition of waste dictate the available disposal options, with landfill being a primary method. The selection of landfill sites is critically dependent on site characteristics and requires thorough and ongoing evaluation, particularly in the areas of water and soil contamination. This study started with geoelectrical and geochemical investigations in the vicinity of the landfill in the city of Damavand. It included 24 geoelectric soundings using the Schlumberger array, organized into 4 profiles covering three intervals. In parallel, three water samples, five soil samples and one leachate sample from two intervals were collected for laboratory analysis. Analyses revealed soil contamination at the waste accumulation site to a depth of two meters with a southerly extent. In particular, a cementitious layer prevents leachate from penetrating deeper into the soil. This, together with a very deep groundwater table, ensures that groundwater contamination is currently and in the foreseeable future prevented. Additional factors such as the depth of the groundwater table, the thickness of the unsaturated zone, the short life of the landfill, reduced rainfall and increased evaporation limit the volume of leachate. The pH of the leachate tends to be alkaline during dry periods and acidic during wet periods. Currently, parameters such as EC, TDS and various ionic and metallic concentrations remain within acceptable limits, ensuring minimal environmental impact.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb