Search published articles


Showing 6 results for Chemical


Volume 4, Issue 2 (5-2011)
Abstract

One of the main methods of determining dispersive potential of clay is chemical tests. These tests are found on the basis of sodium ion as a main chemical element in dispersive clay. The examinations show that there is no correlations between results of physical tests and chemical criterions. In present research after preparing the results of tests on 18 borrow pit sources of clay materials of earth dams, we investigate the Dr. Rahimi's criterion with results of Pinhole Test and then bases on pinhole test results, we suggested the modified criterion of Dr. Rahimi's proposed general criterion. The results of investigations on the range of laboratory data shows that the correlations of Dr. Rahimi's proposed criterion with pinhole test is 63%, while this rate is 74% for our suggested modified criterion. Also it should be considered that Dr. Rahimi's criterion compiled according the results of 24 laboratory samples while suggested criterion in present research compiled according the results of 234 laboratory samples.
Mh Ghobadi, M Kapelehe ,
Volume 10, Issue 4 (5-2017)
Abstract

Durability is a significant parameter in engineering geology and it shows the extent of the degradability of rocks as the result of mechanical and chemical breakdowns. This phenomenon is closely linked to the composition, porosity and texture of rocks. To understand the relationship between the chemical composition of rocks and their durability the mineralogical properties of the rocks along with durability tests under both acidic and alkaline pH environments were determined. Five samples of limestone and three samples of marl were analyzed. The results revealed that rocks containing high levels of CaCo3 were affected in the acidic conditions while rocks containing high levels of SiO2 were not affected by variance in the pH of the environment. These second groups of rocks were more dependent on the texture of their constituent minerals.
Maziar Hosseini, Majid Taromi, Mahdi Saeidi, Vahid Soleimani, Mehdi Soltani Negar,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Series A of coarse-grained alluvial deposits of Tehran are extended in eastern and north-eastern areas of Tehran. Analyzing and studying of these alluvial deposits from a geological point of view as well as their creation time and general characteristics such as the deposits’ mineral types, their source, and formation conditions, gives a better point of view to geotechnical engineers about exploring their characteristics as well as geotechnical aspects in underground structure design, excavations, and foundation design processes. On the other hand, in order to analyze stability, estimating the factor of safety and the seismic design of these structures, considering their location, which is in Tehran with a high seismic hazard area, the necessity of knowing the exact mechanical and dynamic properties of Tehran's alluvium is felt more than ever.
Material and methods
Due to the grain size of Tehran’s coarse-grained alluviums (series A) as well as high level of cementation of them, it is impossible (or maybe so difficult) to make undisturbed samples in order to do experiments. Such that it is excavated 23 boreholes with 30 to 140 meters depth as well as 17 test wells with 20 meters depth in an area which was extended in 10 kilometers in long which were located in Tehran’s No. 13 and No. 14 districts (as it can be seen in Figure 1). During the excavation of the entrance ramp and tunnel of eastern highway of Tehran, in-situ tests have been done in different sequences. Since it was important to investigate real behavior of these alluviums, different in-situ tests such as plate load test, in-situ shear test, pressuremeter test, and downhole test have been done as well as many laboratory and field tests. Furthermore, (1) X-Ray Diffraction (XRD) and (2) X-ray Fluorescence (XRF) as well as (3) Scanning Electron Microscopy (SEM) methods, have been used to explore the type of minerals and those used in cementation.
 
 
 
 

(ب)
 
 
 
Figure 1. a) Geological plan and the location of boreholes and test wells in the alignment of East Tehran Freeway
Results and discussion
Based on the results of XRD tests, it is quite clear that the largest weight percentages of tested samples are lime and silica.
Calcium and magnesium levels-as the high-power cations in flocculation process-in soil sample No. 1 (soil with high cementation level) are much more than soil sample No. 2 (soil with moderate cementation level).
This is the cause of high cementation level of soil sample No. 1 comparing with soils sample No. 2. A rapid increase in stress level can be seen in in-situ shear test results, in low shear displacements, up to reaching a maximum of τp (peak point) and afterwards reduction in shear stress with softening behavior.  
Cohesion and shear strength levels also increase by increasing the depth. According to the plate load tests results, an increase in soil modules changes can be seen in different depths by depth increasing.
Large tendencies to increase in volume and dilation can be seen in under shear load cemented soils, after applying a primary compression on them. A brittle behavior with the occurrence of a certain peak can be seen in cemented samples. The significant increase in strength is directly related to the severe dilation rate, which can be seen in cemented samples results.  The shear strength would be decreased, if this cement is broken during the particles’ displacements.
The results of downhole tests are shown in Figure 2. According to this figure, it has been explored that Vs,30 is about 600 m/s in moderate cemented soils while it is about 850 m/s in highly cemented soils.  Because of the homogeneity and uniformity of sedimentary deposits, shear wave velocity is increasing due to the higher density of the layers and high level of cementation in both of the soil types. However, this increase is not significant at depths above 25 meters.
Conclusion
Based on the results, cementation level of the eastern coarse-grain-alluvium of Tehran is moderate to high and minerals used in cementation of this type of soil are generally carbonated and especially calcite.
Investigating the level of cementation of soil as well as the results of chemical analysis and in-situ tests, it can be found that the strength and deformation parameters of the soil are directly related to the degree of its cementation.
Based on the obtained results, the deformation modulus increases by about 25%, the cohesion by about 55% and the shear wave velocity by about 30% with increasing the degree of cementation (Table 1).
Increases of these parameters are directly related to depth. However, the cementation level does not significantly affect the internal friction angle of the soil.
Table 1. Average results of in-situ shear tests
Deformation Modulus (MPa) Peak Friction Angle (deg.) Cohesion
(kPa)
USCS Depth
(m)
Sample
50-60 39 30-35 GW-GM 5 Moderately Cemented Soil
(M.C. Soil)
75-85 41 50-60 SP-SC 10
85-90 41 50-60 GW-GC 15
95-105 41 50-60 GW-GC 20
60-70 39 35-40 GW-GM 5 Highly Cemented Soil (H.C. Soil)
75-85 39 50-60 GW-GC 10
110-120 42 65-75 GW-GC 15
125-140 41 110-120 GC 20
 
 
Ramin Sarikhani, Amin Jamshidi, Artimes Ghasemi Dehnavi ,
Volume 14, Issue 5 (12-2020)
Abstract

Groundwater salinization in semiarid regions is a limiting factor of use with strategic importance. In this study, the sources of salinity, chemistry, and quality of groundwater in Robat (Khorramabad plain, Iran) were identified through the geochemical methods. Using data analysis, the concentration of cations and anions were recognized with the order of Ca2+>Na+ >Mg2+>K+ and HCO3-> Cl-> SO42+> NO3-> F-, respectively. The high concentration of Na+, Cl-, and EC in some places is attributed to the gypsum and salty formations. In the study area, the salinization processes are identified by natural and artificial activities. The salinization mechanisms are identified by the natural dissolution of gypsum and salt from Gachsaran formation and man-made sources including boreholes drilled through Gachsaran Formation, salt mining, and agricultural activity. Also, the high concentration of nitrate is related to agricultural fertilizers and karstification effects. It is seen that the atmospheric NO3-. HCO3-, Ca2+, and Mg2+ concentration exceeded the standard limit in a few samples probably due to the calcareous formation. Besides, hydrochemical facies of the groundwater are Ca- HCO3 and Na-K-HCO3. Due to the presence of calcareous and salt bearing formations, 46%, 26%, and 20% of all samples show a higher concentration of Ca2+, Na+, and Mg2+, respectively, which exceed the permissible limits. Sulfate and fluoride concentrations are less than the permissible limits. However, due to the presence of calcareous formation, salt bearing formation, and use of agricultural fertilizers, 100%, 26%, and 20% of all samples show a higher concentration of HCO3-, Cl-, and NO3- than the permissible limits.
, , , ,
Volume 17, Issue 1 (3-2023)
Abstract

Waste management is a cornerstone of societal needs. The volume and composition of waste dictate the available disposal options, with landfill being a primary method. The selection of landfill sites is critically dependent on site characteristics and requires thorough and ongoing evaluation, particularly in the areas of water and soil contamination. This study started with geoelectrical and geochemical investigations in the vicinity of the landfill in the city of Damavand. It included 24 geoelectric soundings using the Schlumberger array, organized into 4 profiles covering three intervals. In parallel, three water samples, five soil samples and one leachate sample from two intervals were collected for laboratory analysis. Analyses revealed soil contamination at the waste accumulation site to a depth of two meters with a southerly extent. In particular, a cementitious layer prevents leachate from penetrating deeper into the soil. This, together with a very deep groundwater table, ensures that groundwater contamination is currently and in the foreseeable future prevented. Additional factors such as the depth of the groundwater table, the thickness of the unsaturated zone, the short life of the landfill, reduced rainfall and increased evaporation limit the volume of leachate. The pH of the leachate tends to be alkaline during dry periods and acidic during wet periods. Currently, parameters such as EC, TDS and various ionic and metallic concentrations remain within acceptable limits, ensuring minimal environmental impact.

Dr Eisa Hajiradkouchak, Dr Behzad Rahnama, Dr Hasan Nasrollahzadeh, Mr Ali Shahbazi, Mr Reza Raeiji, Mr Kazem Babaei,
Volume 18, Issue 3 (12-2024)
Abstract

Many researchers believe that providing safe water, sanitary disposal and optimal management are the three axes of health, and in all these cases, while paying attention to the process of doing work, continuous control should also be done. This study was designed and implemented with the aim of seasonally investigating the physicochemical and microbial water quality of Qarasu River in Golestan province using the IRWQIsc index. 6 sampling stations were identified for Qarasu River and sampling was done once every month in four seasons of 1400. The measured parameters include pH, BOD, COD, dissolved oxygen (DO), electrical conductivity (EC), ammonium (NH4), nitrate (NO3), phosphate (PO4), total hardness (TH), turbidity and total suspended solids. It was a stool form. According to the measured parameters, Iran's surface water quality index IRWQISC was calculated. The results of the study based on the index showed that the quality of this index for all stations in all seasons was between 70.5 and 14.7 and according to the IRWQISC index, it was in five good categories (70-1.85), relatively good. (55-1/70), relatively bad (30-44-9), bad (15-29-9) and very bad (less than 15). The influencing parameters were total suspended solids, turbidity, nitrate, temperature and fecal coliform. It can be concluded that the amount of 70.5 with good quality is related to (Tuskestan village) in winter and the amount of 7.14 with very bad quality is related to (Pol Qara Tepe) in summer that the quality of the river water in The Gorgan to Aqqla road bridge station (Qorban Abad) is in bad condition in all seasons due to the entry of urban and industrial pollutants into this station, and Tuskestan village station has good and relatively good quality in most seasons because Tuskestan is in It is located in high altitudeand the entrance of clean running water  into thisarea is more and it is far from industrial and urban pollutants.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb