Search published articles


Showing 4 results for Tunneling

, , ,
Volume 5, Issue 2 (4-2012)
Abstract

The development of large cities requires the use the underground networks for the construction of transportation infrastructures and facilities. Construction of tunnels in soft grounds induces generally soil movement, which could seriously affect the stability and integrity of existing structures. In order to reduce such movements, in particular in urban areas, contractors use more and more the tunnel boring machines (TBM) for the construction of tunnels. Hence in urban environment, Prediction of the ground movements caused by the tunnel excavation is a major engineering challenge. In this paper is used a three-dimensional numerical model and ABAQUS cod for the prediction of soil movements induced during tunnel construction in part of the line 3 of Tehran subway using EPB excavation machine. This investigation include most shield tunneling components such as face pressure, the grouting pressure, excavation machine and frictional contact with soil and shield. Observations of the results demonstrate that the maximum surface settlement in this section is 2.5 cm that is 0.5 cm more than the its allowable value. Simultaneously with surface settlements occur horizontal movements within soil mass, which have different forms in two horizontal directions, and with the expansion of depth they increasing.
M Taremi, A Eftekhari, M Saeedi,
Volume 9, Issue 1 (6-2015)
Abstract

This paper presents a case study of the instability mechanism, to verify and reinforcement method adopted construct collapsed zone of Sabzkuh water conveyance tunnel in southwest Iran. The instability problems were encountered during tunnel excavation due to the failure, changes in stress field lead to deformation causing dilation and increasing the permeability of sand and gravel layers, local fault gouge zones, landslide and in turn significant reduction in shear strength and collapse in tunnel. IPE Arch Support Technique (IAST) was, used for T1 part of Sabzkuh tunnel zone in order to reinforce the ground around tunnel and to cross the zone falling. In this study, Finite Element Method was employed for the quantitative reinforcement effect with deformation modulus of ground, IPE length and size. As a result, the settlement increases as length increases and decreases with the increase of the deformation modulus of ground and IPE size.  
Hadi Fattahi, Zohreh Bayatzadehfard,
Volume 12, Issue 5 (12-2018)
Abstract

Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able to handle incomplete data and noisy. The adaptive network–based fuzzy inference system (ANFIS) and hybrid artificial neural network (ANN) with biogeography-based optimization algorithm (ANN-BBO) are kinds of AI systems that were used in this study to build a prediction model for the MSS caused by EPB shield tunneling. Two ANFIS models were implemented, ANFIS-subtractive clustering method (ANFIS-SCM) and ANFIS-fuzzy c–means clustering method (ANFIS-FCM). The estimation abilities offered using three models were presented by using field data of achieved from Bangkok Subway Project in Thailand. In these models, depth, distance from shaft, ground water level from tunnel invert, average face pressure, average penetrate rate, pitching angle, tail void grouting pressure and percent tail void grout filling were utilized as the input parameters, while the MSS was the output parameter. To compare the performance of models for MSS prediction, the coefficient of correlation (R2) and mean square error (MSE) of the models were calculated, indicating the good performance of the ANFIS-SCM model.


Professor Hamidreza Nassery, Koosha Tamimi, Dr Farshad Alijani, Dr Sadegh Tarigh Azali,
Volume 17, Issue 3 (12-2023)
Abstract

The development of underground transportation activities in cities, such as tunnel boring, may exert short-term or long-term effects on the groundwater and springs of such areas. The construction of the tunnel of Tehran Metro Line 6 (TML6) through alluvium and carbonate rocks of Ali Spring has aroused concern due to the caused fluctuations in discharge and temporary dryness of the spring. The hydrochemical properties of the groundwater and catchment area were investigated to find a connection between the aquifers around the spring and determine the major aquifer feeding it. The estimated volume of water penetrated to the tunnel and the most greatly affected area by the water leakage into the tunnel was determined using analytical methods of water leakage into the tunnel and the DHI method. The statistics for precipitation with the changes in the discharge of the spring before and after the excavation of the metro tunnel were compared to evaluate the changes in the discharge of the spring with the precipitation in the area. The results showed that the metro tunnel excavation has dramatically affected the hydrological system of the area and discharge of the Ali Spring. Moreover, continuing the extraction may produce adverse effects on the discharge of other springs and wells and alter the flow system of the area temporarily or forever.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb