دوره 5، شماره 2 - ( 6-1397 )                   جلد 5 شماره 2 صفحات 105-95 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohebi Bijarpas M, Rostami Shahraji T, samizadeh Lahiji H. Study of antioxidant enzymes activity of Fagus orientalis Lipesk to environmental changes along altitude gradient (Case Study: Guilan forests, Masal). nbr 2018; 5 (2) :95-105
URL: http://nbr.khu.ac.ir/article-1-3074-fa.html
محبی بیجارپسی محبوبه، رستمی شاهراجی تیمور، سمیع زاده لاهیجی حبیب الله. بررسی فعالیت آنزیم های آنتی اکسیدان راش شرقی نسبت به تغییرات محیطی در طول گرادیان ارتفاعی (مطالعه موردی: جنگلهای گیلان، ماسال). یافته‌ های نوین در علوم زیستی. 1397; 5 (2) :95-105

URL: http://nbr.khu.ac.ir/article-1-3074-fa.html


دانشگاه گیلان ، hsamizadeh@yahoo.com
چکیده:   (5365 مشاهده)
به منظور درک مکانیسم سازگاری اکوفیزیولوژی راش شرقی Fagus orientalis Lipesky نسبت به تغییرات ارتفاعی، میزان فعالیت آنزیم های آنتی اکسیدانی شامل پراکسیداز، کاتالاز و آسکوربات پراکسیداز در برگ های درختان راش شرقی در ارتفاعات مختلف (700 متر، 1200 متر و 170 متر ارتفاع از سطح دریا) در جنگلهای گیلان مورد مطالعه قرار گرفت. نمونه برداری از برگ های واقع در نمیه شمالی و جنوبی تاج درختان سالم و بالغ راش شرقی انجام شد. نتایج تجزیه واریانس نشان داد که اختلاف معنی داری در بین و درون جمعیت برای فعالیت آنزیم های کاتالاز و پراکسیداز در سطح احتمال 05/0 وجود داشت و با افزایش ارتفاع، میزان فعالیت کاتالاز و پراکسیداز افزایش یافت، اما فعالیت آنزیم آسکوربات پراکسیداز ابتدا به صورت افزایشی و از ارتفاع میانه با افزایش ارتفاع میزان فعالیت  آن کاهش یافت. همچنین نتایج نشان داد که فعالیت آنزیمی پراکسیداز و کاتالاز در برگ های جمع آوری شده از نمیه شمالی درختان نسبت به برگ های جمع آوری شده از  نیمه جنوبی درختان بیشتر بود. 
متن کامل [PDF 1006 kb]   (2098 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: 1396/11/2 | ویرایش نهایی: 1400/3/11 | پذیرش: 1397/2/4 | انتشار: 1397/2/4 | انتشار الکترونیک: 1397/2/4

فهرست منابع
1. Allison, S.D. and Schultz, J.C. 2004. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in Northern red oak (Quercus rubra L.). – Chem. Ecol. 30: 1363-1379. [DOI:10.1023/B:JOEC.0000037745.66972.3e]
2. Agarwal, S. and Pandey, V. 2004. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. – Biol. Plant 48: 555-560. [DOI:10.1023/B:BIOP.0000047152.07878.e7]
3. Araujo, W.L., Dias, P.C. and Moraes, G.A. 2008. Limitations to photosynthesis in coffee leaves from different canopy positions. – Plant. Physio. Bio. 46: 884-890. [DOI:10.1016/j.plaphy.2008.05.005]
4. Aslam, R., Bostan, N., Nabgha-e-Amen, M.M. and Safdar, W. 2011. A critical review on halophytes: salt tolerant plants. – Med. Plants. Res. 5: 7108-7118.
5. Babaei, F., Jalali, S.A. and Azadfar, D. 2012. Investigation of genetic variation in Zelkova carpinifolia by use of leaf peroxidase isozyme in three lowland habitats in north of Iran. – Wood. Forest. Sci. Tech. 19: 121-133.
6. Babaei, F., Jalali, S.G., Sohrabi, H. and Shirvany, A. 2016. Physiological responses of seedlings of different Quercus castaneifolia C.A. Mey. Provenances to heterogeneous light environments. – Forest Sci. 62: 485-491.
7. Bayramzadeh, V. 2011. Stomatal characteristics of Fagus orientalis Lipsky. in geographically separated locations in the Caspian Forests of Northern Iran. – Environ. Sci. 5: 836-840.
8. Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. – Anal. Biochem. 44: 276-87. [DOI:10.1016/0003-2697(71)90370-8]
9. Canche, B. and Maehly, A.C. 1955. Assay of catalase and peroxidases. – Methods Enzymol. 2: 764-775. [DOI:10.1016/S0076-6879(55)02300-8]
10. Carpenter, S.B. and Smith, N.D. 1981. A comparative studies of leaf thickness among Southern Appalachian hardwoods. – Botany 59: 1393-1396.
11. Cadenas, E. 1989. Biochemistry of Oxygen Toxicity. – Annu. Rev. Biochem. 58: 79-110. [DOI:10.1146/annurev.bi.58.070189.000455]
12. Cesar, A.R., Antunes, M.T. and Vidal, P.G. 2010. Método do estudo de caso em pesquisas da área de contabilidade: uma comparação do seu rigor metodológico em publicações nacionais e internacionais. – Revista de Informação Contábil. 4: 42-64.
13. Espahbodi, K. 2005. Genetic variation and effects of genotype and environment on the establishment and growth mountain ash (Sorbus torminalis). – Ph.D Thesis, Tarbiate Modarres University. pp 74.
14. Foyer, C.H. and Shigeoka, S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. – Plant Physiol. 155: 93-100. [DOI:10.1104/pp.110.166181]
15. Germino, M.J. and Smith, W.K. 2000. High resistance to low temperature photoinhibition in two alpine, snowbank species. – Physiol. Plantarum 110: 89-95. [DOI:10.1034/j.1399-3054.2000.110112.x]
16. Gill, S.S. and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. – Plant. Physio. Bio. 48: 909-930. [DOI:10.1016/j.plaphy.2010.08.016]
17. Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme in aerobic life. – Plant Physiol. 141: 312-322. [DOI:10.1104/pp.106.077073]
18. Han, Q., Katahata, S., Kakubari, Y. and Mukai, Y. 2004. Seasonal changes in the xanthophyll cycle and antioxidants in sun-exposed and shaded parts of the crown of Cryptomeria japonica in relation to rhodoxanthin accumulation during cold acclimation. – Tree Physiol. 24: 609-616. [DOI:10.1093/treephys/24.6.609]
19. Hatziskakis, S., Tsiripidis, I. and Papageogioui, A.C. 2011. Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. – Linnaean Society 165: 422-436. [DOI:10.1111/j.1095-8339.2011.01124.x]
20. Khaksar, R., Aldaghi, M., Salimi, A. and Espahbodi, K. 2015. Investigation on qualitative and quantitative changes of peroxidase isozyme in maple (Acer velutinum) at different altitudes of Mazandaran forests. – Range. Forest. Plant. Breed Gen. Res. 23: 203-214.
21. Karner, C., Farquhar, G.D. and Roksandic, Z. 1988. A global survey of carbon isotope discrimination in plants from high altitude. – Oecologia 74: 623-632. [DOI:10.1007/BF00380063]
22. Keles, Y. and Everest, A. 2008. Relation to altitude adaptation and antioxidant defense system in five shrubs and trees species from middle Taurus Mountains. – Natural. Eng. Sci 2: 45-49.
23. Lykholat, Y., Khromyk, N., Ivanko, I., Kovalenko, I., Shupranova, L. and Kharytonov, V.M. 2016. Metabolic responses of steppe forest trees to Altirude Associated local environmental changes. – Agri. For. 62: 163-171.
24. Mhamdi, A., Queval, G., Chaouch, S., Vanderauwera, S., Van Breusegem, F. and Noctor, G. 2010. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic model. – Environ. Experi. Bot. 61: 4197-4220. [DOI:10.1093/jxb/erq282]
25. Matos, F. S., Wolfgramm, R., Goncalves, F.V., Cavatte, P.C., Ventrella, M.C. and DaMatta, F.M. 2009. Phenotypic plasticity in response to light in the coffee tree. – Environ. Exper. Bot. 67: 421-427. [DOI:10.1016/j.envexpbot.2009.06.018]
26. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. – Plant. Cell. Physiol. 22: 867-880.
27. Öncel, L., Yurdakulol, E., Keleş, Y., Kurt, L. and Yıldız, A. 2004. Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. – Acta Oecologica 26: 211-218. [DOI:10.1016/j.actao.2004.04.004]
28. Parhizkar, P., Korori, S.A., Moraghebi, F., Teimouri, M., Torabian, Y. and Manouchehri, N. 2009. Seasonal alteration of peroxidase in branch and leaves of Eucalyptus viminalis Labill. – For. Pop. Res. 16: 368-377.
29. Polle, A. 1996. Mehler Reaction: Friend or Foe in Photosynthesis? – Bot. Acta. 109: 84-89. [DOI:10.1111/j.1438-8677.1996.tb00546.x]
30. Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A., Vandorpe, M., Gakiere, B, Vanacker, H., Miginiac-Maslow, M., Van Breusegem, F. and Noctor, G. 2007. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. – Plant J. 52: 640-657. [DOI:10.1111/j.1365-313X.2007.03263.x]
31. Qipeng, H., Guo, ZH. and Li, CY. 2008. Advance at phenotypic plasticity in plant responses to abiotic factors. – Sci. Silvae. Sinicae 44: 136-142.
32. Raeisi, S., Jalali, S.G. and Espahbodi, K. 2011. An investigation of genetic variation of (Quercus castaneafolia C.A.Meyer) in Neka and Noor forest of Mazandaran using peroxidase activities. – Tax. and Bio. 2: 11-22.
33. Rundel, P.W., Gibson, C.A., Sharifi, M.R. and Esler, K.J. 1998. Morphological and physiological components of adaptations to light environments in neotropical Heliconia (Heliconiaceae). – J. Trop. Ecol. 14: 789-801. [DOI:10.1017/S0266467498000571]
34. Sagisaka, S. 1985. Injuries of cold acclimatized polar twigs resulting from enzyme inactivation and substrate during frozen and ambient for a long period. – Plant Cell Physiol. 28: 1135-1145. [DOI:10.1093/oxfordjournals.pcp.a077009]
35. Saho, A.C. and Mishra, D. 1987. Changes in some enzyme activities during excised rice leaf senescence under NaCl-stress. – Bio. Physio. 182: 501-505.
36. Sofo, A., Dichio, B., Xiloyannis, C. and Masia, A. 2005. Antioxidant defenses in olive trees during drought stress: changes in activity of some antioxidant enzymes. – Func. Plant. Bio. 32: 45-53. [DOI:10.1071/FP04003]
37. Streb, P., Shang, W., Feierabend, J. and Bligny, R. 1998. Divergent strategies of photo protection in high-mountain plants. – Planta 207: 313-324. [DOI:10.1007/s004250050488]
38. Zhua, J.T., Lia, X.Y., Zhanga, X.M., Zenga, F.J., Lina, L.S., Yanga, S.G. Guiaand, D.W. and Wang, H. 2010. Ecophysiological adaptation of Calligonum roborov-skii to decreasing soil water content along an altitudinal gradient in the Kunlun Mountains, Central Asia. – Plant Physiol. 57: 826-832.
39. Wildi, B. and Lütz, C. 1996. Antioxidant composition of selected high alpine plant species from different altitudes Plant. – Cell. Environ. 19: 138-146. [DOI:10.1111/j.1365-3040.1996.tb00235.x]
40. Yamasaki, H., Sakihama, Y. and Ikehara, N. 1997. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. – Plant. Physiol. 115: 1405-1412. [DOI:10.1104/pp.115.4.1405]
41. Zolfaghari, R., Hosseini. S.M. and Korori, S.A. 2010. Relationship between peroxidase and catalase with metabolism and environmental factors in Beech (Fagus orientalis Lipsky in three different elevations. – Environ. Sci. 1: 243-252.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb