Volume 18, Issue 19 (7-2020)                   RSMT 2020, 18(19): 57-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fasihi Ramandi E, Khaledi N. High intensity interval training induced changes in the hepatic FGF-21 gene expression and serum TNF-α in diabetic male rats. RSMT 2020; 18 (19) :57-68
URL: http://jsmt.khu.ac.ir/article-1-434-en.html
, N.khaledi@khu.ac.ir
Abstract:   (5446 Views)
Diabetes is a common metabolic disease. In diabetic patients glucose uptake is reduced and FGF-21 plays an important role in glucose uptake, alsoTNF-α is an inflammatory factor that increases in diabetes. The purpose of this study was to investigate the effect of 6 weeks of HIIT training on the gene expression FGF-21 in the liver and the serum TNF-α level of male diabetic rats. For this purpose, 48 Wistar rats were randomly divided into four groups Control, diabetes, high intensity interval training, and diabetes and high intensity interval training. For the induction of diabetes, peritoneal injection (Streptozotocin 50 mg/kg) was used. Training protocol including 10 set of 1-minute running (between each set of 2 minutes of rest) 3 sessions per week and was completed within 6 weeks. Finally, after the extraction of liver samples, the expression of the FGF-21 gene was measured by Real Time PCR and serum TNF-α level with ELISA kit.There was no significant change in expression of FGF-21 in any group, but the reduction of serum levels of inflammatory factors, such as TNF-α protein at the level of significance (p=0.05), and maintaining and improving the time to exhaustion, was shown by high intensity interval training (0.000).Likely the inflammatory factors of diabetes such as TNF-α have a deleterious effect on the expression and binding of FGF-21 (β-Klotho) cofactors And causes resistance to FGF-21 into various tissues of the body, such as the liver. Exercise can reduce inflammation caused by diabetes.
 
Full-Text [PDF 1193 kb]   (1257 Downloads)    
Type of Study: Research |
Received: 2020/07/18 | Accepted: 2020/07/15 | Published: 2020/07/15

References
1. Pedersen, B.K., Febbraio, M.A. (2012). Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology. 8(8):457-65. [DOI:10.1038/nrendo.2012.49]
2. Izumiya, Y., Bina, H.A., Ouchi, N., Akasaki, Y., Kharitonenkov, A., Walsh, K. (2008). FGF21 is an Akt-regulated myokine. Federation of European Biochemical Societies. 582(27):3805-10. [DOI:10.1016/j.febslet.2008.10.021]
3. Goedecke, J.H., Micklesfield, L.K. (2014).The effect of exercise on obesity, body fat distribution and risk for type 2 diabetes. Medicine and Sport Science. 60:82-93. [DOI:10.1159/000357338]
4. Inagaki, T., Dutchak, P., Zhao, G., Ding, X., Gautron, L., Parameswara, V., Li, Y., Goetz, R., Mohammadi, M., Esser, V., Elmquist, J.K., Gerard, R.D., Burgess, S.C., Hammer, R.E., Mangelsdorf, D.j., Kliewer, S.A. (2007). Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metabolism. 5(6):415-25. [DOI:10.1016/j.cmet.2007.05.003]
5. Dutchak, P.A., Katafuchi, T., Bookout, A.L., Choi, J.H., Yu, R.T., Mangelsdorf, D.J., Kliewer, S.A. (2012). Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell Metabolism . 148(3):556-67. [DOI:10.1016/j.cell.2011.11.062]
6. Beenken, A., Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery. 8(3):235-53. [DOI:10.1038/nrd2792]
7. Virtanen, K.A. (2014). BAT thermogenesis: Linking shivering to exercise. Cell Metabolism. 19(3):352-4. [DOI:10.1016/j.cmet.2014.02.013]
8. Moller, D.E. (2000). Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends in Endocrinology & Metabolism. 11(6):212-7. [DOI:10.1016/S1043-2760(00)00272-1]
9. Waters, J.P., Pober, J.S., Bradley, J.R. (2013). Tumour necrosis factor and cancer. The Journal of Pathology. 230(3):241-8. [DOI:10.1002/path.4188]
10. Idriss, H.T., Naismith, J.H. (2000). TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microscopy Research and Technique. 50(3):184-95. https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H [DOI:10.1002/1097-0029(20000801)50:33.0.CO;2-H]
11. https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H [DOI:10.1002/1097-0029(20000801)50:33.0.CO;2-H]
12. Hotamisligil, G.S., Shargill, N.S., Spiegelman, B.M. (1993) .Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 259(5091):87-91. [DOI:10.1126/science.7678183]
13. Iizuka, K., Takeda, J., Horikawa, Y. (2009). Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes .FEBS Letters. 583(17):2882-6. [DOI:10.1016/j.febslet.2009.07.053]
14. Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K ., Oki, J., Koyama, Y., Kimura, M., Asada, M., Komi-Kuramochi, A., Oka, S., Imamura, T. (2008). BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Molecular Endocrinology. 22(4):1006-14. [DOI:10.1210/me.2007-0313]
15. Ogawa, Y., Kurosu, H., Yamamoto, M., Nandi, A., Rosenblatt, K.P., Goetz, R., Eliseenkova, A.V.,Mohammadi, M., Kuro-o, M. (2007). BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Academy of Sciences of the United States of America. 104(18):7432-7. [DOI:10.1073/pnas.0701600104]
16. Diaz-Delfin, J., Hondares, E., Iglesias, R., Giralt, M., Caelles, C., Villarroya, F. (2012). TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology.153(9):4238-45. [DOI:10.1210/en.2012-1193]
17. Hosseinian, M., Banitalebi, E., Amirhosseini, S.E. (2016). Effect of 12 Weeks of Intensive Interval and Combined Training on Apolipoprotein A and B, Visfatin and Insulin Resistance in Overweight Middle-Aged Women with Type 2 Diabetes. Quarterly of Horizon of Medical Sciences. 22(3):237-45. (Persian) [DOI:10.18869/acadpub.hms.22.3.237]
18. Karami, M., Banitalebi, E. (2017). The comparision of effect of 8 weeks of intense interval training and combined strength-endurance training on fibroblast growth factor-21 (FGF-21) levels in women with type 2 diabetes2. Journal of Nursing Education. 6(3):37-46. [DOI:10.21859/jne-06035]
19. Wu, T., Gao, X., Chen, M., van Dam, R.M. (2009). Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: a meta-analysis. Obesity Reviews. 10(3):313-23. [DOI:10.1111/j.1467-789X.2008.00547.x]
20. Shaw, K., Gennat, H., O'Rourke, P., Del Mar, C. (2006). Exercise for overweight or obesity. Cochrane Database of Systematic Reviews. (4):CD003817. [DOI:10.1002/14651858.CD003817.pub3]
21. Talanian, J.L., Galloway, S.D., Heigenhauser, G.J., Bonen, A., Spriet, L.L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology (1985). 102(4):1439-47. [DOI:10.1152/japplphysiol.01098.2006]
22. Laursen, P.B., Jenkins, D.G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Medicine. 32(1):53-73. [DOI:10.2165/00007256-200232010-00003]
23. Hemmatinafar, M., Kordi, M., Choopani, S., Choobineh, S., Arefi, R. (2013). The effect of high intensity interval training (HIIT) on plasma adiponectin levels, insulin sensitivity and resistance in sedentary young men. Journal of Zanjan University of Medical Sciences. 21(84):1-12. (Persian)
24. Cuevas-Ramos, D., Almeda-Valdes, P., Meza-Arana, C.E., Brito-Cordova, G., Gomez-Perez, F.J., Mehta, R., Oseguera-Moguel, J., Aguilar-Salinas, C.A. (2012). Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 7(5):e38022. [DOI:10.1371/journal.pone.0038022]
25. Cuevas-Ramos, D., Almeda-Valdes, P., Gomez-Perez, F.J., Meza-Arana, C.E., Cruz-Bautista, I., Arellano-Campos, O., Navarrete-Lopez, M., Aguilar-Salinas, C.A. (2010). Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. European Journal of Endocrinology. 163(3):469-77. [DOI:10.1530/EJE-10-0454]
26. Segsworth, B.M. (2015). Acute sprint interval exercise induces a greater FGF-21 response in comparison to work-matched continuous exercise. The University of Western Ontario. 3254
27. Zhang, M., Lv, X.Y., Li, J., Xu, Z.G., Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research. 2008:704045. [DOI:10.1155/2008/704045]
28. Rajasekar, R., Manokaran, K., Rajasekaran, N., Duraisamy, G. ,Kanakasabapathi, D. (2014). Effect of Alpinia calcarata on glucose uptake in diabetic rats-an in vitro and in vivo model. Journal of Diabetes & Metabolic Disorders. 13(1):33. [DOI:10.1186/2251-6581-13-33]
29. Calcutt, N.A. (2004). Modeling diabetic sensory neuropathy in rats. Methods in Molecular Medicine. 99:55-65. [DOI:10.1385/1-59259-770-X:225]
30. Songstad, N.T., Kaspersen, K.H., Hafstad, A.D., Basnet, P., Ytrehus, K., Acharya, G. (2015). Effects of high intensity interval training on pregnant rats, and the placenta, heart and liver of their fetuses. Public Library of Science. 10(11):e0143095. [DOI:10.1371/journal.pone.0143095]
31. Yang, S.J., Hong, H.C., Choi, H.Y., Yoo, H.J., Cho, G.J., Hwang, T.G., Baik, S.H., Choi, D.S., Kim, S.M., Choi, K.M. (2011). Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clinical Endocrinology (Oxford). 75(4):464-9. [DOI:10.1111/j.1365-2265.2011.04078.x]
32. Kim, H.J., Song, W. (2017). Resistance training increases fibroblast growth factor-21 and irisin levels in the skeletal muscle of Zucker diabetic fatty rats. Journal of Exercise Nutrition & Biochemistry. 21(3):50-4. [DOI:10.20463/jenb.2017.0008]
33. Kim, K.H., Kim, S.H., Min, Y.K., Yang, H.M., Lee, J.B., Lee, M.S. (2013). Acute exercise induces FGF21 expression in mice and in healthy humans. Public Library of Science. (5)8:e63517. [DOI:10.1371/journal.pone.0063517]
34. Suzuki, M., Uehara, Y., Motomura-Matsuzaka, K., Oki, J., Koyama, Y., Kimura, M., Asada, M., Komi-Kuramochi, A., Oka, S., Imamura, T. (2008). betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor(FGFR) 1c and FGFR3c. Molecular Endocrinology. 22(4):1006-14. [DOI:10.1210/me.2007-0313]
35. Ogawa, Y., Kurosu, H., Yamamoto, M., Nandi, A., Rosenblatt, K.P., Goetz, R., Eliseenkova, A.V., Mohammadi, M., Kuro-o, M. (2007). BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Academy of Sciences of the United States of America. 104(18):7432-7. [DOI:10.1073/pnas.0701600104]
36. Díaz-Delfín, J., Hondares, E., Iglesias, R., Giralt, M., Caelles, C., Villarroya, F. (2012). TNF-a represses -Klotho Expression and Impairs FGF21 Action in Adipose Cells Involvement of JNK1 in the FGF21 Pathway. Endocrinology. 153(9):4238-45. [DOI:10.1210/en.2012-1193]
37. Silva, C.M.S., Vieira-Junior R, C., Trombeta, J.C.R., Lima, T.R., Frag, G.A., Se, M.S. (2017). Effects of aerobic and resistance training of long duration on pro- and anti-inflammatory cytokines in rats. Revista Andaluza de Medicina del Deporte. (4):170-5. [DOI:10.1016/j.ramd.2016.02.005]
38. Safarzade, A., Gharakhanlou, R., Hedayati, M., Talebi-Garakani, E. (2012). The effect of 4 weeks resistance training on serum vaspin, Il-6, CRP and TNF-Α concentrations in diabetic rats. Iranian Journal of Endocrinology and Metabolism. 14(1):68-74. (Persian)

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb