Volume 13, Issue 10 (10-2015)                   RSMT 2015, 13(10): 17-33 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarifi A, Rajabi H, Hasan nia S, Dehkhoda M, Mirsoltani B. The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men. RSMT 2015; 13 (10) :17-33
URL: http://jsmt.khu.ac.ir/article-1-145-en.html
Abstract:   (7456 Views)

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that
resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid
oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites,
including the transport of fatty acids across the plasma membrane. The transportation across this membrane is
recognized to be primarily protein mediated. Therefore, the purpose of this study was to determine the effect of
low-volume high intensity interval training on protein content of sarcolemmal fatty acids transporters (FAT/CD36
and FABPpm) in young men. Twenty recreationally active young men were assigned to a HIT (n=10, 19.3 yr old,
67.2 kg body wt, and 172.7 cm ht) or Control (n=10, 19.7 yr old, 65.9 kg body wt, and 174.4 cm ht) group. HIT
group performed three training sessions per week over 4 weeks. Each session consisted of 8-11×60 s intervals
at ∼100% of peak power output elicited during a ramp VO2peak test separated by 75 s of recovery. Skeletal
muscle (vastus lateralis) biopsy samples were obtained before and after training. HIT increased (17.5%)VO2peak (p<0.05). Also, after 4 weeks low-volume HIT, sarcolemmal content of CD36 and FABPpm increased
14 and 25 percent ,respectively (p<0.05). Therefore, the results showed that the practical model of low-volume
HIT could increase aerobic capacity and sarcolemmal content of CD36 and FABPpm. The increase indicates
that the facilitation of in muscle fatty acid transportation can be adapted which in turn increases the fat oxidation
capacity.

Full-Text [PDF 1176 kb]   (4146 Downloads)    
Type of Study: Research |
Received: 2017/01/21 | Accepted: 2017/01/21 | Published: 2017/01/21

References
1. Van Loon, L.J. (2004). Use of intramuscular triacylglycerol as a substrate source during exercise in humans. Journal of Applied Physiology. 97(4): 1170-87.
2. Susan, L.M., Bonen, A., Vusse,G.L. (2007). Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: Role of sarcolemmal substrate transporters. Molecular and Cellular Biochemistry. 299: 5-18.
3. Kampf, J.P., Kleinfeld, A.M. (2007). Is membrane transport of FFA mediated by lipid, protein, or both? An unknown protein mediates free fatty acid transport across the adipocyte plasma membrane. Physiology 22: 7–14.
4. Koonen, D.P.Y., Benton ,C.R., Arumugam, Y., Tandon, N.N., Calles, E.J., Glatz, J.F.C, Luiken, J.J., Bonen, A. (2004). Different mechanisms can alter fatty acid transport when muscle contractile activity is chronically altered. American Journal of Physiology - Endocrinology and Metabolism. 286: 1042-9.
5. Hajri, T., Abumrad, N.A. (2002). Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annual Review of Nutrition. 22: 383-415.
6. Gimeno, R.E., Ortegon, A.M., Patel, S., Punreddy, S., Ge, P., Sun, Y., Lodish, H.F., Stahl, A.(2013). Characterization of a heart-specific fatty acid transport protein. The Journal of Biological Chemistry. 278(18): 16039-44.
7. Isola, L.M., Zhou, S.L., Kiang, C.L., Stump, D.D., Bradbury, M.W., Berk, P.D. (1995). 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid- binding protein and saturable fatty acid uptake. Proceedings of the National Academy of Sciences USA 92: 9866-70.
8. Abumrad, N.A., el-Maghrabi, M.R., Amri, E.Z., Lopez, E., Grimaldi, P.A. (1993). Cloning of a rat adipocyte membrane protein implicated in binding or transport of long chain fatty acids that is induced during prea- dipocyte differentiation. Homology with human CD36. The Journal of Biological Chemistry.268(24):17665–8.
9. Nickerson, J.G., Alkhateeb, H., Benton, C.R., Lally, J., Nickerson, J., Han, X.X., Wilson, M.H., Jain, S.S., Snook, L.A., Glatz, J.F.C., Chabowski, A., Luiken, J.J.F.P., Bonen, A. (2009). Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1: differential effects on fatty acid esterification and oxidation in rat skeletal muscle. The Journal of Biological Chemistry. 284: 16522-30.
10. Coburn, C.T., Knapp, F.F., Febbraio, M., Beets, A.L., Silverstein, R.L., Abumrad, N.A. (2000). Defective uptake and utilization of long chain fatty acids in muscle and adipose tissue of CD36 knockout mice. The Journal of Biological Chemistry. 275(42): 32523–9.
11. Abumrad, N., Coburn, C., Ibrahimi, A. (1999). Membrane proteins implicated inlong-chain fatty acid uptake by mammalian cells CD36,FATP and FABPm. Biochimica et Biophysica Acta. 1441(1):4–13.
12. Bonen, A., Luiken, J.J., Arumugam, Y., Glatz, J.F.C., Tandon, N.N. (2000). Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. The Journal of Biological Chemistry. 275: 14501-8.
13. Bonen, A., Campbell, S.E., Benton, C.R., Chabowski, A., Coort, S.L., Han, X.X., Koonen, D.P., Glatz, J.F., Luiken, J.J. (2004). Regulation of fatty acid transport by fatty acid translocase/CD36. Proceedings of the Nutrition Society. 63: 245–9.
14. Talanian, J.L., Graham, P,. Holloway, L.A., George, J.F., Bonen, A., Lawrence, L. (2010). Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism. 299: 180-8.
15. Luiken, J.J.F.P., Turcotte, L.P., Bonen, A. (1999). Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. The Journal of Lipid Research. 40: 1007-16.
16. Chabowski, A., Gorski, J., Luiken, J.J., Glatz ,J.F., Bonen, A.(2007). Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 77(5-6): 345–53.
17. Trost, S.G., Owen, N., Bauman, A.E., Sallis, J.F., Brown,W. (2002) Correlates of adults’ participation in physical activity: review and update. Medicine & Science in Sports & Exercise. 34: 1996-2002.
18. Rognmo, O., Hetland, E., Helgerud, J., Hoff, J., Slordahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European journal of cardiovascular prevention and rehabilitation. 11(3): 216-22.
19. Warburton, D.E., McKenzie, D.C., Haykowsky, M.J., Taylor, A., Shoemaker, P., Ignaszewski, A.P., Chan, S.Y. (2005). Effectiveness of highintensity interval training for the rehabilitation of patients with coronary artery disease. American Journal of Cardiology. 95: 1080-4.
20. King, A.C., Haskell, W.L., Young, D.R., Oka, R.K., Stefanick, M.L. (1995). Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 91(10): 2596-604.
21. Bartlett, J.D., Close, G.L., MacLaren, D.P., Warren, G., Barry, D., James, P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. Journal of Sports Sciences. 29(6):547-53.
22. Burgomaster, K.A., Howarth, K.R., Phillips, S.M., Rakobowchuk, M., Macdonald, M.J., McGee, S.L., Gibala, M.J.(2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology. 586(1): 151-60.
23. Burgomaster Kirsten, A., Burgomaster, K.A., Naomi, M., Cermak, N.M., Stuart, M., Phillips, S.M., Carley, R., Benton, C.R., Bonen, A., Martin, J., Gibala, M.J.. (2007). Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 292(5): R1970-R6.
24. Burgomaster, K.A., Heigenhauser, G.J., Gibala, M.J. (2006). Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. Journal of Applied Physiology. 100(6): 2041-7.
25. Burgomaster, K.A., Hughes ,S.C., Heigenhauser, G.J., Bradwell, S.N., Gibala, M.J.(2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. Journal of Applied Physiology. 98(6): 1985-90.
26. Gibala, M.J., Little, J.P., van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S ., Tarnopolsky ,M.A. (2006). Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology. 575: 901–11.
27. Little, J.P., Safdar, A., Bishop, D., Tarnopolsky, M.A., Gibala, M.J. (2011). An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. American Journal of Physiology Regulatory Integrative and Comparative Physiology. 300(6): 1303-10.
28. Little, J.P., Safdar, A., Wilkin, G.P., Tarnopolsky, M.A., Gibala, M.J. (2010). A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. The Journal of Physiology. 588(6): 1011-22.
29. Perry, C.G.R., Heigenhauser, G.J.F., Bonen, A., Spriet, L.L. (2008). High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 33: 1112-23.
30. Talanian, J.L., Galloway, S.D., Heigenhauser ,G.J., Bonen, A., Spriet, L.L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology. 102: 1439–47.
31. Goodpaster, B.H., Katsiaras, A., Kelley, D.E. (2003). Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 52: 2191-7.
32. Butz, C.E., McClelland , G.B., Brooks, G.A. (2004). MCT1 confirmed in rat striated muscle mitochondria. Journal of Applied Physiology. 97(3): 1059-66.
33. Carter, S.L., Rennie, C.D., Hamilton, S.J., Tarnopolsky, M.A. (2001). Changes in skeletal muscle in males and females following endurance training. Canadian Journal of Physiology and Pharmacology. 79(5): 386-92.
34. Whyte, L.J., Gill, J.M., Cathcart, A.J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 59: 1421-8.
35. Babraj, J.A., Vollaard, N.B., Keast, C., Guppy, F.M., Cottrell, G., Timmons, J.A.(2009). Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocrine Disorders. 9:3.
36. Laursen, P.B., Shing, C.M., Peake, J.M., Coombes, J.S., Jenkinse, D.G. (2005). Influence of high-intensity interval training on adaptations in well-trained cyclists. The Journal of Strength & Conditioning Research. 19(3): 527-33.
37. Holloszy, J.O., Booth, .F.W. (1976). Biochemical adaptations to endurance exercise in muscle. Annual Review of Physiology. 38: 273-91.
38. Luiken, J.J., Arumugam, Y., Bell, R.C, Calles-Escandon, J., Tandon, N.N., Glatz, J.F., Bonen, A. (2002). Changes in fatty acid transport and transporters are related to the severity of insulin deficiency. American Journal of Physiology - Endocrinology and Metabolism. 283(3): 612-21.
39. St-Denis, J.F., Cushman, S.W. (1998). Role of SNARE’s in the GLUT4 translocation response to insulin in adipose cells and muscle. Journal of Basic and Clinical Physiology and Pharmacology. 9: 153-65.
40. Rabol, R., Boushel, R., Dela, F. (2006). Mitochondrial oxidative function and type 2 diabetes. Applied Physiology, Nutrition, and Metabolism. 31: 675-83.
41. Binas, B., Han, X.X., Eroll, E., Luiken, J.J., Glatz, J.F., Dyck, D.J., Motazavi, R., Adihetty, P.J., Hood, D.A., Bonen, A. (2003). A null mutation in H-FABP only partially inhibits skeletal muscle fatty acid metabolism. American Journal of Physiology - Endocrinology and Metabolism. 285: E481–E489.
42. Luiken, J.J.F.P., Koonen, D.P.Y., Coumans ,W.A., Pelsers, M.M.A.L., Binas, B., Bonen, A., Glatz, J.F.C. (2003).Long chain fatty acid uptake by skeletal muscles is impaired in homozygous, but not heterozygous, heart-type--FABP null mice. Lipids 38(4): 491-6.
43. Luiken, J.J., Coort, S.L., Willems, J., Coumans, W.A., Bonen, A., van der Vusse, G.J., Glatz, J.F. (2003). Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52(7): 1627-34.
44. Luiken, J.J., Dyck, D.J., Han, X.X., Tandon, N.N., Arumugam ,Y., Glatz, J.F, Bonen, A. (2002). Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. American Journal of Physiology - Endocrinology and Metabolism. 282(2): 491-5.
45. Wu, Q., Ortegon ,A.M., Tsang, B., Doege, H., Feingold, K.R., Stahl, A. (2006). FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Molecular and Cellular Biology. 26: 3455-67.
46. Van Oort, M.M., van Doorn ,J.M., Bonen, A., Glatz, J.F., van der Horst, D.J., Rodenburg, K.W., Luiken, J.J. (2008). Insulin-induced translocation of CD36 to the plasma membrane is reversible and shows similarity to that of GLUT4. Biochimica et Biophysica Acta. 1781(1-2): 61–71.
47. Luiken, J.J.F.P., Koonen, D.P.Y., Willems, J., Zorzano, A., Fischer, Y., van der Vusse, G.J., Bonen, A., Glatz, J.F.C. (2002). Insulin stimulates longchain fatty acid uilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes. 51: 3113-19.
48. Turcotte, L.P, Swenberger, J.R., Tucker, M.Z., Yee, A.J. (1999). Training induced elevation in FABPpm is associated with increased palmitate use in contracting muscle. Journal of Applied Physiology. 87: 285-93.
49. Bonen, A., Dyck, D.J., Ibrahimi, A., Abumrad, N.A. (1999). Muscle contrac- tile activity increases fatty acid metabolism and transport and FAT/CD36. American Journal of Physiology - Endocrinology and Metabolism. 276: E642–E649.
50. Richter, E.A., Nielsen, J.N., Jørgensen, S.B., Frosig, C., Wojtasze- wski, J.F. (2003). Signalling to glucose transport in skeletal muscle during exercise. Acta Physiol Scand. 178: 329-35.
51. Richter, E.A., Nielsen, J.N., Jørgensen, S.B., Frosig, C., Birk, J.B., Wojtaszewski, J.F. (2004). Exercise signalling to glucose transport in skel- etal muscle. Proceedings of the Nutrition Society. 63: 211-6.
52. Stanley, W.C., Recchia, F.A., Lopaschuk, G.D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews. 85: 1093-129.
53. Chabowski, A., Coort, S.L., Calles-Escandon, J., Tandon, N.N., Glatz, J.F., Luiken, J.J., Bonen, A. (2005). The subcellular compartmentation of fatty acid transporters is regulated differently by insulin and by AICAR. FEBS Lett. 579(11): 2428-32.
54. Jørgensen, S.B., Viollet, B., Andreelli, F., Frosig, C., Birk, J.B., Schjerling, P., Vaulont, S., Richter, E.A., Wojtaszewski, J.F. (2004). Knock out of the alpha2 but not alpha1 5-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribo- furanoside but not contraction-induced glucose uptake in skeletal muscle. The Journal of Biological Chemistry. 279: 1070-9.
55. Habets, D.D.J. (2008). Regulation of cardiac longchain fatty acid and glucose metabolism: studies with cardiomyocytes from genetically manipulated mice (PhD thesis). Maastricht: Maastricht University.
56. Raney, M.A., Turcotte, L.P. (2008). Evidence for the involvement of CaMKII and AMPK in Ca2-dependent signaling pathways regulating FA uptake and oxidation in contracting rodent muscle. Journal of Applied Physiology. 104: 1366-73.
57. Raney, M.A., Yee, A.J., Todd, M.K., Turcotte, .L.P. (2005). AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction. American Journal of Physiology - Endocrinology and Metabolism. 288: 592-8.
58. Gibala, M.J., Little, J.P., MacDonald, M.J., Hawley, J.A. (2012). Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of Physiology. 590(5): 1077–84.
59. Keizer, H.A., Schaart, G., Tandon, N.N., Glatz, J.F., Luiken, J.J. (2004). Subcellular immunolocalisation of fatty acid translocase (FAT)/CD36 in human type-1 and type-2 skeletal muscle fibres. Histochemistry and Cell Biology. 121: 101–7.
60. Vistisen, B., Roepstorff, K., Roepstorff, C., Bonen, A., van Deurs, B., Kiens, B. (2004). Sarcolemmal FAT/CD36 in human skeletal muscle colocalizes with caveolin-3 and is more abundant in type1 than type 2 fibers. The Journal of Lipid Research. 45: 603-9.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research in Sport Medicine and Technology

Designed & Developed by: Yektaweb