Volume 10, Issue 1 (3-2010)
Abstract
مسائل لایۀ کرانهای، مدل ریاضی پدیدههای طبیعی و مسائل فیزیک و مهندسی هستند که در نقطه یا نقاطی که لایۀ کرانهای تشکیل میشود باید جوابهای مسئله را با تکنیکهای خاصی بررسی کرد تا جواب مسئله بهصورت یکنواخت و یکپارچه درآید. برای این مسئله ابتدا شرایط کافی برای وجود و عدم وجود تشکیل لایۀ کرانه ارائه میشود، سپس برای حالتی که در هر دو نقطه لایۀ کرانهای اتفاق میافتد، جواب تقریبی مسئله را با استفاده از روش بسطهای مجانبی سازگار شده در پنج مرحله بهصورت یکپارچه به دست میآوریم.
Alireza Sarakhsi, Mohammad Jahanshahi,
Volume 13, Issue 3 (11-2013)
Abstract
In this papear, we produce the method for formation and recognizing boundary layers in singular perturbation problems. This method involves four step for localization of non-local boundary conditions to local case.For the given problem some sufficient and necessary conditions are given for formation and non formation of boundary layers. Since the existence of boundary layers and their places has a direct relation with the structure of approximate solutions and uniform solutions, therefore the main purpose of this paper is recognition and formation of boundary layers in singular perturbation problems with non-local boundary conditions. This process will be done by using fundamental solution of adjoint given differential equation and necessary conditions.In fact by using these necessary conditions and given boundary conditions, we make an algebraic system.By solving this algebraic system by Cramer rule we obtain boundary values of unknown function.These values of unknown function are local boundary conditions.The mathematical model for this kind of problem usually is in the form
of either ordinary differential equations (O.D.E) or partial differential equations (P.D.E) in which the highest derivative is multiplied by some powers of as a positive small parameter.