Quasi- Secondary Submodules

A. J. Taherizadeh: Kharazmi University

Abstract

Let R be a commutative ring with non-zero identity and M be a unitary R-module. Then the concept of quasi-secondary submodules of M is introduced and some results concerning this class of submodules is obtained.

1. Introduction

Throughout this paper all rings are commutative with non-zero identity and all modules are unitary. In [4] L.Fuchs introduced and studied the concept of quasi-primary ideals (see also [5]). An ideal I of a ring R is called a quasi-primary ideal of R if the radical of I is a prime ideal of R. This concept then generalized to modules, i.e., the concept of quasi-primary submodules of a module introduced and developed in [3]. Here, we introduce the dual notation, that is, the quasi-secondary submodules of a module and obtain some results concerning this class of submodules. In section 2, we obtain some preliminary properties of quasi-secondary submodules. Section 3 is devoted to the quasi-secondary submodules of a multiplication module. Now we define some concepts which will be needed in sequel.

Let M be an R-module and N a submodule of it. The ideal $\{r \in R \mid r M \subseteq N\}$ will be denoted by $\left(N_{R}^{\prime} M\right)$; in particular $\left(0{ }_{R}^{\dot{R}} M\right)$ is called the annihilator of M. A non-zero submodule N of M is called a secondary (resp.second) submodule of M if for each $r \in R$ the homothety $N \xrightarrow{r} N$ is surjective or nilpoten (resp. surjective or zero). In this case $\sqrt{\left(0{ }_{R} N\right)}$ is a prime ideal, say p, and we call N a p-secondary (resp.a p-second) submodule of M. We refer readers for more details concerning secondary (resp.second) submodulse to [9] (resp. [12]).
KeyWords: quasi - secondary submodules, secondary submodules, multiplication modules
2010 Mathematics Subject Classification:13C05,13C13
Received: 26 Nov. $2011 \quad$ Revised 18 July 2012

* Correspondence Author Taheri@tmu.ac.ir

An R-module M is said to be a multiplication module if for each submodule N of M there exists an ideal I of R such that $N=I M$. It is easy to see that in this case $N=$ $\left(N_{R}^{i} M\right) M$. Also the ideal $\theta(M)$ is defined as $\theta(M):=\sum_{m \in M}\left(R m_{R}^{\dot{ }} M\right)$. If M is a multiplication module and N is a submodule of it, then $M=\theta(M) M$ and $N=\theta(M) N$. (see [1]). An R-module M is sum-irreducible if $M \square 0$ and the sum of any two proper submodules of M is always a proper submodule. Finally a proper submodule N of an Rmodule M is called a prime submodule if for each $r \in R$ the homothety $M / N \xrightarrow{r} M / N$ is either injective or zero. This implies that $\operatorname{Ann}\left({ }^{M} / N\right)=p$ is a prime ideal of R, and N is said to be a p-prime submodule (c.f. [7], [8], [10] and [11]).

2. Quasi-Secondary Submodules

The starting point of this section is the definition of quasi-secondary submodules of a module.

Definitian 2.1. Let M be a non-zero R-module. Then the non-zero submodule N of M is said to be quasi-secondary if $\left.\sqrt{\left(0_{R}\right.} N\right)=p$ where p is a prime ideal of R. It is obvious that every secondary (or second) submodule of a module is a quasi-secondary submodule, but the converse is not true in general. For example, 2 Z is a 0 -quasisecondary submodule of the Z -module Z but it is not 0 -secondary (or 0 -second) submodule. (Here Z denotes the set of all integers.)

Remark 2.2.

(i) Let M be a non-zero R-module and N a submodule of it such that $\left.\sqrt{\left(0{ }_{R}^{\circ}\right.} N\right)=m(m \in \operatorname{Max}(R))$. Then N is m-secondary (m-second).
(ii) Every quasi-secondary submodule of a module over a zero-dimentional ring (i.e. , a ring in which every prime ideal is a maximal ideal) is secondary.
(iii) Every quasi-secondary submodule of a module over a D.V.R is secondary.

Definition 2.3. Let M be an R-module and N a submodule of M. An element r of R is called co-primal to N if $r N=N$. Denote by $W(N)$ the set of all elements of R that are not co-primal to N. The submodule N is said to be a co-primal submodule of M if $W(N)$ is an ideal of R. This ideal is always a prime ideal. In this case we say that N is a p-co-primal submodule of M . The class of co-primal submodules of a module is a
fairly large class. For example, all secondary (second) submodules are co-primal. Also it is easy to see that a sum-irreducible submodule of a module is co-primal. But, in general, a quasi-secondary submodule of a module may not be a co-primal submodule. (consider the Z-module Z.). It is worth to mention that in [2] the term secondal is used for co-primal submodules. The next proposition characterizes those p-quasi- secondary submodules which are p-co-primal.

Proposition 2 4. Let N be a p-quasi-secondary submodule of an R-module M. Then N is a pcoprimal submodule of M if and only if it is a p-secondary submodule of M.

Proof \Rightarrow) Let $N \xrightarrow{r} N$ be the R-endomorphism of N given by multiphication by r of R and $r N \neq N$. Then by our assumption $r \in p=\{s \in R \mid s N \neq N\}$. On the other hand, $p=\sqrt{0{ }_{R}} N$ and so there exists a positive integer t such that $r^{t} N=0$. The result follows. \Leftarrow) Is obvious.

The proof of two next propositions is easy and so we state them without proof.
Proposition 2.5. Let M be a module over an integral domain and N be a 0 - co-primal submodule of M.Then N is 0 -secondary.

Proposition 2.6. Let M be an R-module and $N_{1}, N_{2}, \ldots, N_{t}$ be submodules of M. Then
(i) Suppose that for $i=1,2, N_{i}$ is p_{i}-quasi-secondary. Then $N_{1}+N_{2}$ is quasisecondary if and only if $p_{1} \subseteq p_{2}$ or $p_{2} \subseteq p_{1}$
(ii) If N_{1}, \ldots, N_{t} are p-quasi-secondary, then $N_{1}+\cdots+N_{t}$ is a p-quasi-secondary submodule of M.
(iii) If $N_{1}+\cdots+N_{2}$ is a p-quasi-secondary submodule of M.Then N_{j} is p-quasisecondary for some $j, 1 \leq j \leq t$.

3. Multiplication Modules

In this short section we give a property of quasi-secondary submodules of a multiphication module .

Lemma 3.1. let M be a multiplication module and N be a p-quasi-secondary submodule of M. Then $\theta(M) \nsubseteq p$.
Proof. Suppose that $\theta(M) \subseteq p$ and $0 \neq n \in N$. Then $R n=\theta(M) R n \subseteq p n$. Hence $n=p_{0} n$ for some $p_{0} \in p$. By our assumption there exists a positive integer t such that $p_{0}^{t} N=0$. Therefore $n=p_{0}^{t} n=0$, a contradiction.

Theorem 3.2. Suppose that M is a faithfull multiplication module and N a p-quasisecondary submodule of M. Then $p M$ is a prime submodule of M.In particular, if $p \in \max (R)$, then $p M$ is a maximal submodule of M.

Proof. By Lemma $3.1, \theta(M) \nsubseteq p$. Now suppose that $p M=M=R M$. Then by [1, Theorem1.5] $R \cap \theta(M)=\theta(M)=p \cap \theta(M)$ and hence $\theta(M) \subseteq p$ which is a contradiction. Thus $p M \neq M$ and the result of the first part follows from [6, Lemma 2.4(2)]. The last part can be deduced from the first part and [6, Corollary 2.7]

Acknowledgement

The author would like to thank Kharazmi University for the financial support.

References

1. Y. Al-shaniafi and S. Singh, "A companion ideal of a multiplication module", Periodica Mathematica Hungarica., 46 (1) (2003) 1-8.
2. H. Ansari-Toroghy and F. Farshadifar, "The dual notions of some generalizations of prime submodules", J. Algebra, 39 (2011) 2396-2416.
3. S. Ebrahimi Atani and A.Y.Darani, "On quasi-primary submodules", Chiang May J.Sci., 33(3) (2006) 249-254.
4. L. Fuchs, "On quasi-primary ideals", Acta.Sci.Math. (Szeged), 11 (1947) 174-183.
5. L. Fuchs and E. Mosteig, "Ideals theory in prufer domains", J. Algebra, 252 (2002) 411-430.
6. S. C. Lee, S. Kim, S. C. Chung, "Ideals and submodules of multiplication modules", J. Korean Math. Soc. 42 (5) (2005) 933-948.
7. C. P. Lu, "Prime submodules of modules", Comm. Math. Univ. Sancti. Pauli, 33 (1984) 61-69.
8. C. P. Lu, "Spectra of modules, Comm.in Algebra, 23 (1995) 3741-3752.
9. I. G. Macdonald, "Secondary representation of modules over commutative rings", Symp. Math. XI (1973) 23-43.
10. A. Marcelo, J. Masque, "Prime submodules, the descent invariant and modules of finite length", J.of Algebra, 189(1997) 273-293.
11. R. L. McCasland, P.F. Smith, "Prime submodules of Noetherian modules", Rocky Mtn. J. 23 (1993) 1041-1062.
12. S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001) 273-278.
