# A certain N -Generalized Principally Quasi-Baer Subring of the Matrix rings 

H. Haj Seyyed Javadi Amirkabir University<br>A. Moussavi, E. Hashemi: University of Tarbiat Modarres


#### Abstract

For a fixed positive integern, we say a ring with identity is $n$-generalized right principally quasi-Baer, if for any principal right ideal $I$ of $R$, the right annihilator of $I^{n}$ is generated by an idempotent. This class of rings includes the right principally quasi-Baer rings and hence all prime rings. A certain n-generalized principally quasi-Baer subring of the matrix ring $M_{n}(R)$ are studied, and connections to related classes of rings (e.g., p.q.Baer rings and n -generalized p.p. rings) are considered ${ }^{1}$.


## 1. Introduction and Preliminaries

Throughout all rings are assumed to be associative with identity. From [12, 21], a ring $R$ is (quasi-)Baer if the right annihilator of any (right ideal) nonempty subset of $R$ is generated, as a right ideal, by an idempotent. Moreover, in [12] Clark proved the leftright symmetry of this condition. He uses this condition to characterize when a finite dimensional algebra with unity over an algebraically closed filed is isomorphic to a twisted matrix units semigroup algebra. The class of quasi-Baer rings is a nontrivial generalization of the class of Baer rings. Every prime ring is quasi-Baer, hence prime rings with nonzero right singular ideal are quasi-Baer; but not Baer [24]. For a positive integer $n>1$, the $n \times n$ matrix ring over a non-Pruifer commutative domain is a prime quasi-Baer ring which is not a Baer ring by [27] and [21, p.17]. The $\mathrm{n} \times \mathrm{n}(\mathrm{n}>1)$ upper triangular matrix ring over a domain which is not a division ring is quasi-Baer but not

Baer by an example due to Cohn; see [1], [20] and [5]. The theory of Baer and quasiBaer rings has come to play an important role and major contributions have been made in recent years by a number of authors, including Birkenmeier, Chatters, Khuri, Kim, Hirano and Park (see, for example [1], [4-7], [16], [21], [26] and [28]).

A ring satisfying a generalization of Rickart's condition [30] (i.e., right annihilator of any element is generated (as a right ideal) by an idempotent) has a homological characterization as a right p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective. R is called a p.p.-ring (also called a Rickart ring [2, p.18]), if it is both right and left p.p.-ring. In [9] Chase shows the concept of p.p.-ring is not left-right symmetric. Small [30] shows that a right p.p.-ring $R$ is Baer (so p.p), when $R$ is orthogonally finite. Also it is shown by Endo [13] that a right p.p.-ring $R$ is p.p when $R$ is abelian (i.e., every idempotent is central). Finally Chatters and Xue [11] prove that in a duo (i.e., every one sided ideal is two sided) p.p.ring $R$, if $\mid$ is a finitely generated right projective ideal ofR, then $\mid$ is left projective and a direct summand of an invertible ideal. Following Birkenmeier et al. [7], R is called right principally quasi-Baer (or simply right p.q.-Baer), if the right annihilator of a principal right ideal is generated by an idempotent. Equivalently, $R$ is right p.q.-Baer if $R$ modulo the right annihilator of any principal right ideal is projective. Similarly, left p.q.-Baer rings can be defined. If $R$ is both right and left p.q.-Baer, then it is called p.q.Baer. The class of p.q.-Baer rings includes all biregular rings, all quasi-Baer rings, and all abelian p.p.-rings. A ring $R$ is said to be $p$-regular, if for every $x \in R$ there exists a natural numbern, depending onx, such that $x^{n} \in x^{n} R x^{n}$. A ring $R$ is called a generalized right p.p.-ring if for any $x \in R$ the right ideal $x^{n} R$ is projective for some positive integern, depending on $x$, or equivalently, if for any $x \in R$ the right annihilator of $x^{n}$ is generated by an idempotent for some positive integern, depending on $x$. A ring is called generalized p.p.-ring, if it is both generalized right and left p.p.-ring.

Note that Von Neumann regular rings are right (left) p.p.-rings by Goodearl [14,

Theorem 1.1], and a same argument as [14, Theorem 1.1] shows that $p$-regular rings are generalized p.p.-rings. Right p.p.-rings are generalized right p.p obviously. See [18] for more details.

Definition 1.1. Given a fixed positive integern, we say a ring $R$ is $n$-generalized right principally quasi Baer (or n-generalized right p.q.-Baer), if for all principal right ideal $I$ of $R$, the right annihilator of $1^{n}$ is generated by an idempotent. Left cases may be defined analogously.

The class of $n$-generalized right p.q.-Baer rings includes all right p.q.-Baer rings, (and hence all biregular rings, quasi-Baer rings, abelian p.p.-rings and semicommutative (i.e., if $r(x)$ is an ideal for all $x \in R$ ) generalized p.p rings). Theorem 2.1 in section 2 , allows us to construct examples of ngeneralized p.q.- Baer rings that are not p.q.-Baer. Some conditions on the equivalence of $n$-generalized p.q.-Baer and $n$-generalized p.p.rings are discussed. However, we show by examples that the class of $n$-generalized p.q.Baer rings properly extends the aforementioned classes.

In this paper, we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. We study $n$-generalized p.q.-Baer subrings of the matrix ring $M_{n}(R)$. Theorem 2.2, enables us to generate examples of $n$-generalized p.q.-Baer subrings of the matrix ring $M_{n}(R)$. Theorem 2.2, which extends [18, Proposition 6], enables us to provide more examples of matrix rings, that are both $n$-generalized p.q.-Baer and $n$-generalized p.p.ring. Connections to related classes of rings are investigated. Although the class of it generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, and all abelian p.p. rings), however we show by examples that the class of $n$-generalized p.q.-Baer rings properly extends the aforementioned classes.

Note that, for a reduced ring (which has no nonzero nilpotent elements), we have $I_{R}(R x)=I_{R}\left((R x)^{n}\right)=I_{R}\left(x^{n}\right)=I_{R}(x)=r_{R}(x)=r_{R}\left(x^{n}\right)=r_{R}\left((x R)^{n}\right)=r_{R}(x R)$, for every $x \in R$ and every positive integer $n$. Therefore reduced rings are semicommutative and semicommutative rings are abelian. Also for reduced rings the definitions of right p.q.-

Baer, n-generalized right p.q.-Baer, generalized p.p. and p.p.-ring are coincide. This leads one ask whether commutative reduced rings are $n$-generalized p.q-Baer. However, the answer is negative by the following.

Example 1.2. Let $p$ be a prime number and $R=\{(a, b) \in Z \oplus Z \mid a \equiv b(\bmod p)\}$, then $R$ is a commutative reduced ring. Note that the only idempotents of $R$ are $(0,0)$ and $(1,1)$. One can show that $r_{R}((p, 0) R)=(0, p) R$, $\operatorname{sor}_{R}((p, 0) R)$ dose not contain a nonzero idempotent of $R$; and hence $R$ is not $n$-generalized right quasi-Baer, for any positive integer $n$.

Lemma1.3. Let $R$ be an abelian $n$-generalized right p.q.-Baer ring, then $r_{R}\left(I^{n}\right)=r_{R}\left(I^{m}\right)$ for every principal right ideal $I$ of $R$ and each positive integer $m$ withn $\leq m$.

Proof. It is enough to show that $r_{R}\left(I^{n}\right)=r_{R}\left(I^{n+1}\right)$. Let $x \in r_{R}\left(I^{n+1}\right)$, then $\mid x \subseteq r_{R}\left(I^{n}\right)=f R$ for some idempotent $f \in R$. Hence $I^{n} x=I^{n} x f=0$. Thus $x \in r_{R}\left(I^{n}\right)$.

## 2. N -generalized right principally quasi Baer subrings of the matrix rings

In this section we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. Theorem 2.3, which extends [18, Proposition 6], enables us to provide more examples of matrix rings that are both ngeneralized p.q.-Baer and $n$-generalized p.p.ring. We begin with Theorem 2.2 below, which enables us to generate examples of $n$ generalized p.q.-Baer subrings of the matrix ring $M_{n}(R)$ :
Lemma 2.1[18, Lemma 2]. Let $R$ be an abelian ring and define

$$
S_{n}:=\left\{\left(\begin{array}{cccc}
a & a_{12} & \cdots & a_{1 n} \\
0 & a & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a
\end{array}\right): a, a_{i j} \in R\right\},
$$

with $n$ a positive integer $\geq 2$. Then every idempotent in $S_{n}$ is of the form

$$
\left(\begin{array}{cccc}
f & 0 & \cdots & 0 \\
0 & f & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f
\end{array}\right) \text { with } f^{2}=f \in R
$$

We will use $S_{n}$ Throughout the remainder of the paper, to denote the ring indicated in Lemma 2.1.

Theorem 2.2. If $R$ is an abelian p.q.-Baer ring and $n(\geq 2)$ is a positive integer, then $S_{n}$ is an $n$-generalized right p.q.-Baer ring.

Proof. We proceed by induction onn. It is easy to show that $S_{2}$ is a 2-generalized right p.q.-Baer ring. Let $I_{n}$ be a principal right ideal of $S_{n}$. Consider $I_{n-1,1}=\left\{B \in S_{n-1} \mid B\right.$ is obtained by deleting $n$-th row and $n$-th column of a matrix $\left.i n I_{n}\right\}$, and $\mathrm{I}_{\mathrm{n}-1,2}=\left\{\mathrm{B} \in \mathrm{S}_{\mathrm{n}-1} \mid \mathrm{B}\right.$ is obtained by deleting 1 -th row and 1 -th column of a matrix in $\left.I_{n}\right\}$. It is clear that $I_{n-1,1}$ and $I_{n-1,2}$ are principal right ideals of $S_{n-1}$. By induction

 of $R$. Since $R$ is right p.q.-Baer, $r_{R}(J)=f_{1} R=f_{2} R$. Hence $f_{1}=f_{2}$, since $R$ is an abelian ring. Now let

$$
X=\left(\begin{array}{cccc}
x & x_{12} & \cdots & x_{1 n} \\
0 & x & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x
\end{array}\right) \in r_{S_{n}}\left(I_{n}^{n}\right) \text { and } Y=\left(\begin{array}{cccc}
a_{1} a_{2} a_{3} \cdots a_{n} & y_{12} & \cdots & y_{1 n} \\
0 & a_{1} a_{2} a_{3} \cdots a_{n} & \cdots & y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{1} a_{2} a_{3} \cdots a_{n}
\end{array}\right) \in I_{n}^{n}
$$

Since $r_{S_{n-1}}\left(I_{n-1,1}^{n-1}\right)=r_{S_{n-1}}\left(I_{n-1,2}^{n-1}\right)=e_{1} S_{n-1}, x$ and $x_{i j}$ 's are in $f_{1} R$ for each $i$ and $j$ except $x_{1 n}$. So we have $a_{1} a_{2} \cdots a_{n} x_{1 n}+y_{1 n} x=0$. Hence $y_{1 n} x=0$, since $f_{1} \in B(R)$. Thus $x_{1 n} \in f_{1} R$ and hence $r_{S_{n}}\left(I_{n}^{n}\right) \subseteq e S_{n}$ for

$$
e=\left|\begin{array}{cccc}
f_{1} & 0 & \cdots & 0 \\
0 & f_{1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f_{1}
\end{array}\right| \in S_{n}
$$

Since, for each $Y \in I_{n} e$, all entries of the main diagonal of $Y$ are zero and $e$ is central, $I_{n}^{n} \mathrm{e}=\left(I_{\mathrm{n}} \mathrm{e}\right)^{\mathrm{n}}=0$. Thus $\mathrm{r}_{\mathrm{S}_{n}}\left(I_{n}^{n}\right)=e S_{n}$. Therefore $S_{n}$ is $n$-generalized right p.q.-Baer.

The following result, which generalizes [18, Proposition 6], provides examples of
matrix rings that are both $n$-generalized p.q.-Baer and n-generalized p.p.-ring:

Theorem2.3. If $R$ is an abelian p.p.-ring, then $S_{n}$ is an abelian $n$-generalized p.p.-ring.
Proof. We prove by induction onn. First, we show that the trivial extension $S_{2}$ of $R$ is 2 -generalized right p.p. Let $A=\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right) \in S_{2}$ and $r_{R}(a)=e R$, withe $=e^{2} \in R$. It is clear that, $f R \subseteq r_{S_{2}}\left(A^{2}\right)$ with $f=\left(\begin{array}{ll}e & 0 \\ 0 & e\end{array}\right)$. Next, let $A^{2}\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)=0$. Since $R$ is reduced, $a^{2} x=a x=0$ and $a^{2} y=a y=0$. Hence ex $=x$ and $y=e y$. Thus $\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)=f\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)$. Therefore $S_{2}$ is 2 -generalized right p.p. Now assume $B=\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n} \\ 0 & a & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \in S_{n}$. Consider $\quad B_{1}=\left(\begin{array}{cccc}a & a_{12} & \cdots & a_{1 n-1} \\ 0 & a & \cdots & a_{2 n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right)$ and $B_{2}=\left(\begin{array}{cccc}a & a_{23} & \cdots & a_{2 n} \\ 0 & a & \cdots & a_{3 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a\end{array}\right) \quad$ in $S_{n-1}$, then by the induction hypothesis, there existse $e_{i}^{2}=e_{i} \in S_{n-1}, f_{i}^{2}=f_{i} \in R$, such that $r_{S_{n-1}}\left(B_{i}{ }^{n-1}\right)=e_{i} S_{n-1}$, $e_{i}=\left(\begin{array}{cccc}f_{i} & 0 & \cdots & 0 \\ 0 & f_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_{i}\end{array}\right)$ for $i=1,2$.By direct calculations, we have $r_{S_{n}}\left(B^{2 n-2}\right)=e S_{n} \quad$ with $e=\left(\begin{array}{cccc}f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f\end{array}\right)$. Sincer $r_{R}(a)=f R$, by $\left[27\right.$, Lemma 3], $r_{r_{n}}\left(B^{n}\right)=r_{S_{n}}\left(B^{2 n-2}\right)=e S_{n}$.

Corollary 2.4 [18, Proposition 6]. If $R$ is a domain, then $S_{n}$ is an abelian $n$ generalized p.p.-ring.

For a semicommutative ring, the definitions of $n$-generalized right p.q.-Baer and $n-$ generalized right p.p. are coincide:

Proposition 2.5. Let $R$ be a semicommutative ring. Then $R$ is $n$-generalized right p.q.-Baer if and only if $R$ is $n$-generalized right p.p.

Proof. Let $R$ be $n$-generalized right p.q.-Baer and $a \in R$. Then $r_{R}(a R)^{n}=e R$ for some idempotent $e \in R$. Let $x \in r_{R}\left(a^{n}\right)$. Since $R$ is semicommutative, $R a R x \subseteq r_{R}\left(a^{n-1}\right)$, which implies that $r_{R}(a R)^{n}=e R$. The converse is similar.

There exists an n-generalized right p.q.-Baer ring, which is generalized p.p.-ring but is not semicommutative.

Example 2.6. Let $R$ be an integral domain and $S_{4}$ be defined over R. Then $S_{4}$ is abelian 4 -generalized p.p.-ring and is 4 -generalized p.q.-Baer by Corollary 2.4. By considering $b=a=e_{12}+e_{14}+e_{34}$ and $c=e_{23}$ in $S_{4}$, where $e_{i j}$ denote the matrix units, we have $a b=0$, and $a c b \neq 0$, hence $a S_{4} b \neq 0$.

Now we conjecture that subrings of n generalized right p.q.-Baer rings are also n generalized right p.q.-Baer. But the answer is negative by the following.

Example 2.7. For a field $F$, take $F_{n}=F$ for $n=1,2, \ldots$, and let $S$ be the $2 \times 2$ matrix ring over the ring $\Pi_{n=1}^{\infty} F_{n}$. By [7, Proposition 2.1 and Theorem 2.2] we have that $S$ is a p.q.-Baer ring. Let

$$
R=\left(\begin{array}{cc}
\Pi_{n=1}^{\infty} F_{n} & \bigoplus_{n=1}^{\infty} F_{n} \\
\bigoplus_{n=1}^{\infty} F_{n} & <\bigoplus_{n=1}^{\infty} F_{n}, 1>
\end{array}\right),
$$

which is a subring ofS, where $\left\langle\oplus_{n=1}^{\infty} F_{n}, 1\right\rangle$ is the $F$-algebra generated by $\oplus_{n=1}^{\infty} F_{n}$ and 1. Then by [7, Example 1.6], R is semiprime p.p which is neither right p.q.-Baer (and hence not $n$-generalized right p.q.-Baer), nor left p.q.-Baer (and hence not $n$ generalized left p.q.-Baer).

## 3. Examples of n-generalized p.q.-Baer subrings

Although the class of $n$-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, all quasi-Baer rings, and all abelian p.p. rings), however we show by examples that the class of $n$ generalized p.q.-Baer rings properly extends the aforementioned classes.

By the following example, there is an abelian p.q.-Baer (hence semiprime) ring $R$,
which is not reduced, but $S_{n}$ is an abelian $n$-generalized right p.q.-Baer ring that is not semiprime.

Example 3.1. By Zalesskii and Neroslavskii [10, Example 14.17, p.179], there is a simple noetherian ring $R$ that is not a domain and in which 0 and 1 are the only idempotents. Thus $R$ is an abelian p.q.-Baer ring that is neither left nor right p.p, and hence is not reduced. By [7, Proposition 1.17] R is semiprime and by Theorem 2.1, $\mathrm{S}_{\mathrm{n}}$ is abelian n-generalized p.q.-Baer, that is not semiprime and hence is not right p.q.-Baer.

Example 3.2. If $R$ is an abelian p.q-Baer ring, then $R[x] /<x^{3}>$ is an rgeneralized p.q.-Baer ring.

Proof. First we note that $\Theta: T \rightarrow R[x] /<x^{3}>$ defined by

$$
\left(a_{0}, a_{1}, a_{2}\right) \rightarrow\left(a_{0}+a_{1} x+a_{2} x^{2}\right)+\left\langle x^{3}>\right.
$$

is an isomorphism, where $T=\{(a, b, c) \mid a, b, c \in R\}$ is a ring with addition componentwise and the multiplication defined by

$$
\left.\left(a_{1}, b_{1}, c_{1}\right) a_{2}, b_{2}, c_{2}\right)=\left(a_{1} a_{2}, a_{1} b_{2}+b_{1} a_{2}, a_{1} c_{2}+b_{1} b_{2}+c_{1} a_{2}\right) .
$$

Let J be an ideal of $T$. Suppose $I=\{a \in R \mid(a, b, c) \in J\}$, it is clear that $I$ is an ideal of $R$. Since $R$ is p.q.-Baer, $r_{R}(1)=e R$ for an idempotent $e \in R$. We can show that $r\left(J^{3}\right)=(e, 0,0) \top$, and hence, the result follows.

There exists a commutative $n$-generalized p.q.-Baer (hence $n$-generalized p.p.-) ring $R$, over which $S_{n}$ is not an $n$-generalized p.p.-ring.

Example 3.3. Let $p \neq 3$ be a prime integer and $Z_{p^{3}}$ be the ring of integers modulo $p^{3}$, and $S_{3}$ be defined over $Z_{p^{3}}$. Let $A=\mathrm{pl}_{3}+e_{13}$, where $I_{3}$ is the identity matrix and $e_{i j}$ denote the matrix units. It is clear that $\mathrm{pl}_{3}+\mathrm{e}_{3}+\mathrm{e}_{12} \in \mathrm{r}_{\mathrm{S}_{n}}\left(\mathrm{~A}^{3}\right)$ and idempotents of $\mathrm{S}_{3}$ are $I_{3}$ and 0 . Hence $r_{S_{3}}\left(A^{3}\right) \neq I_{3} S_{3}$ and that $S_{3}$ is not 3 -generalized p.p.-ring, but $Z_{p^{3}}$ is a 3 -generalized p.p.-ring.

Example 3.4. For every abelian quasi-Baer (resp. p.p.-) ring R, by Theorems 2.1 and
2.2, the ring $S_{n}$ is n-generalized right p.q.-Baer, which is not right p.q.-Baer. Therefore we are able to provide examples of n-generalized right p.q.-Baer rings that is not right p.q.-Baer:

Let $F$ be a field, and $R=F[x]$ be the polynomial ring where $x$ is an indeterminate. Then $S_{n}$ is a $n$-generalized right p.q.-Baer ring that is not right p.q.-Baer.

## Acknowledgement

The authors are deeply indebted to the referee for many helpful comments and suggestions for the improvement of this paper.

## Reference

1. E.P. Armendariz, A note on extensions of Baer and p.p-rings, J. Austral. Math. Soc 18 (1974) 470-473.
2. S.K. Berberian , Baer *-Rings, Grundlehren Math. Wiss. Band 195, Springer: Berlin, 1972, 296.
3. G.F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983) 567-580.
4. G.F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992) 319-326.
5. G.F. Birkenmeier, J. Kim and J.K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001) 24-42.
6. G.F. Birkenmeier, J.Y. Kim and J.K. Park, On quasi-Baer rings, Contemporary Mathematics. 259 (2000) 67-92.
7. G.F. Birkenmeier, J.Y. Kim and J. k. Park, Principally quasi-Baer rings, Comm. Algebra 29(2) (2001) 639-660.
8. G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, PrePrint.
9. S. A. Chase, Generalization of triangular matrices. Nagoya Math. J. 18 (1961) 13-25.
10. A.W. Chatters and C.R. Hajarnavis, Rings with chain conditions, Pitman, Boston, 1980.
11. A.W. Chatters and W. Xue, On right duo p.p. rings, Glasgow Math. J. 32 (1990) 221-225.
12. W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967) 417-424.
13. S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960) 167-170.
14. K.R. Goodearl, Von neumann regular rings; Krieger: Malabar (1991).
15. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002) 45-52.
16. Y. Hirano, On ordered monoid rings over a quasi-Baer ring, Comm. Algebra 29(5) (2001) 2089-2095.
17. C.Y. Hong, N.K. Kim and T.k. Kwak, Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra 151 (2000) 215-226.
18. C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002) 37-52.
19. C. Huh, Y. Lee and A Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30(2) (2002) 751-761.
20. S.Jondrup, p.p. rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (1971) 431-435.
21. I. Kaplansky, Rings of operators, Benjamin, New York,(1965).
22. N.H. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000) 477-488.
23. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3(4) (1996) 289-300.
24. J. Lawrence, A singular primitive ring, Proc. Amer. Math. Soc. 45 (1974) 59-62.
25. A.C. Mewborn. Regular rings and Baer rings, Math. Z. 121 (1971) 211-219.
26. A. Moussavi and E. Hashemi, Extensions of Baer and quasi-Baer rings, submitted.
27. M. Ohori, On noncommutative generalized p.p. rings, Math. J. Okayama Univ. 25 (1984) 157-167.
28. P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970) 127-138.
29. M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997) 14-17.
30. C.E. Rickart, Banach algebras with an adjoint operation. Ann. of Math. 47 (1946) 528-550.
31. L.W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967) 656-658.
