A certain N -Generalized Principally Quasi-Baer Subring of the Matrix rings

H. Haj Seyyed Javadi Amirkabir University A. Moussavi, E. Hashemi: University of Tarbiat Modarres

Abstract

For a fixed positive integer n, we say a ring with identity is *n*-generalized right principally quasi-Baer, if for any principal right ideal I of R, the right annihilator of I^n is generated by an idempotent. This class of rings includes the right principally quasi-Baer rings and hence all prime rings. A certain n-generalized principally quasi-Baer subring of the matrix ring $M_n(R)$ are studied, and connections to related classes of rings (e.g., p.q.-Baer rings and n-generalized p.p. rings) are considered¹.

1. Introduction and Preliminaries

Throughout all rings are assumed to be associative with identity. From [12, 21], a ring *R* is (quasi-)Baer if the right annihilator of any (right ideal) nonempty subset of *R* is generated, as a right ideal, by an idempotent. Moreover, in [12] Clark proved the left-right symmetry of this condition. He uses this condition to characterize when a finite dimensional algebra with unity over an algebraically closed filed is isomorphic to a twisted matrix units semigroup algebra. The class of quasi-Baer rings is a nontrivial generalization of the class of Baer rings. Every prime ring is quasi-Baer, hence prime rings with nonzero right singular ideal are quasi-Baer; but not Baer [24]. For a positive integer n > 1, the $n \times n$ matrix ring over a non-Prüfer commutative domain is a prime quasi-Baer ring which is not a Baer ring by [27] and [21, p.17]. The $n \times n$ (n > 1) upper triangular matrix ring over a domain which is not a division ring is quasi-Baer but not

^{1. 2000} Mathematical Subject Classification. 16D15; 16D40; 16D70.

Keywords and phrases. n-Generalized p.q.-Baer ring; p.p.-ring; Annihilators; triangular matrix ring

Baer by an example due to Cohn; see [1], [20] and [5]. The theory of Baer and quasi-Baer rings has come to play an important role and major contributions have been made in recent years by a number of authors, including Birkenmeier, Chatters, Khuri, Kim, Hirano and Park (see, for example [1], [4-7], [16], [21], [26] and [28]).

A ring satisfying a generalization of *Rickart's condition* [30] (i.e., right annihilator of any element is generated (as a right ideal) by an idempotent) has a homological characterization as a right p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective. R is called a p.p.-ring (also called a Rickart ring [2, p.18]), if it is both right and left p.p.-ring. In [9] Chase shows the concept of p.p.-ring is not left-right symmetric. Small [30] shows that a right p.p.-ring R is Baer (so p.p), when R is orthogonally finite. Also it is shown by Endo [13] that a right p.p.-ring R is p.p when R is abelian (i.e., every idempotent is central). Finally Chatters and Xue [11] prove that in a duo (i.e., every one sided ideal is two sided) p.p.ring R, if I is a finitely generated right projective ideal of R, then I is left projective and a direct summand of an invertible ideal. Following Birkenmeier et al. [7], R is called right principally quasi-Baer (or simply right p.q.-Baer), if the right annihilator of a principal right ideal is generated by an idempotent. Equivalently, R is right p.g.-Baer if R modulo the right annihilator of any principal right ideal is projective. Similarly, left p.q.-Baer rings can be defined. If R is both right and left p.q.-Baer, then it is called p.q.-Baer. The class of p.q.-Baer rings includes all biregular rings, all quasi-Baer rings, and all abelian p.p.-rings. A ring R is said to be p – regular, if for every $x \in R$ there exists a natural number *n*, depending on *x*, such that $x^n \in x^n R x^n$. A ring *R* is called a generalized right p.p.-ring if for any $x \in R$ the right ideal $x^n R$ is projective for some positive integer n, depending on x, or equivalently, if for any $x \in R$ the right annihilator of x^n is generated by an idempotent for some positive integer n, depending on x. A ring is called *generalized p.p.-ring*, if it is both generalized right and left p.p.-ring.

Note that Von Neumann regular rings are right (left) p.p.-rings by Goodearl [14,

Theorem 1.1], and a same argument as [14, Theorem 1.1] shows that p – regular rings are generalized p.p.-rings. Right p.p.-rings are generalized right p.p obviously. See [18] for more details.

Definition 1.1. Given a fixed positive integer n, we say a ring R is n-generalized right principally quasi Baer (or n-generalized right p.q.-Baer), if for all principal right ideal I of R, the right annihilator of I^n is generated by an idempotent. Left cases may be defined analogously.

The class of n-generalized right p.q.-Baer rings includes all right p.q.-Baer rings, (and hence all biregular rings, quasi-Baer rings, abelian p.p.-rings and *semicommutative* (i.e., if r(x) is an ideal for all $x \in R$) generalized p.p rings). Theorem 2.1 in section 2, allows us to construct examples of n-generalized p.q.- Baer rings that are not p.q.-Baer. Some conditions on the equivalence of n-generalized p.q.-Baer and n-generalized p.p.rings are discussed. However, we show by examples that the class of n-generalized p.q.-Baer rings properly extends the aforementioned classes.

In this paper, we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. We study n-generalized p.q.-Baer subrings of the matrix ring $M_n(R)$. Theorem 2.2, enables us to generate examples of n-generalized p.q.-Baer subrings of the matrix ring $M_n(R)$. Theorem 2.2, which extends [18, Proposition 6], enables us to provide more examples of matrix rings, that are both n-generalized p.q.-Baer and n-generalized p.p.-ring. Connections to related classes of rings are investigated. Although the class of n-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, and all abelian p.p. rings), however we show by examples that the class of n-generalized p.q.-Baer rings properly extends the aforementioned classes.

Note that, for a *reduced* ring (which has no nonzero nilpotent elements), we have $l_R(Rx) = l_R((Rx)^n) = l_R(x^n) = l_R(x) = r_R(x) = r_R(x^n) = r_R(xR) = r_R(xR)$, for every $x \in R$ and every positive integer n. Therefore reduced rings are semicommutative and semicommutative rings are abelian. Also for reduced rings the definitions of right p.q.-

Baer, n-generalized right p.q.-Baer, generalized p.p. and p.p.-ring are coincide. This leads one ask whether commutative reduced rings are n-generalized p.q-Baer. However, the answer is negative by the following.

Example 1.2. Let *p* be a prime number and $R = \{(a,b) \in Z \oplus Z \mid a \equiv b \pmod{p}\}$, then *R* is a commutative reduced ring. Note that the only idempotents of *R* are (0,0) and (1,1). One can show that $r_R((p,0)R) = (0,p)R$, so $r_R((p,0)R)$ dose not contain a nonzero idempotent of *R*; and hence *R* is not n-generalized right quasi-Baer, for any positive integer *n*.

Lemma 1.3. Let *R* be an abelian *n*-generalized right p.q.-Baer ring, then $r_R(I^n) = r_R(I^m)$ for every principal right ideal *I* of *R* and each positive integer *m* with $n \le m$.

Proof. It is enough to show that $r_R(I^n) = r_R(I^{n+1})$. Let $x \in r_R(I^{n+1})$, then $Ix \subseteq r_R(I^n) = fR$ for some idempotent $f \in R$. Hence $I^n x = I^n x f = 0$. Thus $x \in r_R(I^n)$.

2. N -generalized right principally quasi Baer subrings of the matrix rings

In this section we discuss some type of matrix rings formed over p.q.-Baer or p.p. rings. Theorem 2.3, which extends [18, Proposition 6], enables us to provide more examples of matrix rings that are both n-generalized p.q.-Baer and n-generalized p.p.-ring. We begin with Theorem 2.2 below, which enables us to generate examples of n-generalized p.q.-Baer subrings of the matrix ring $M_n(R)$:

Lemma 2.1 [18, Lemma 2]. Let *R* be an abelian ring and define

with *n* a positive integer ≥ 2 . Then every idempotent in S_n is of the form

$$\begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f \end{pmatrix}$$
 with $f^2 = f \in R$.

H. Haj Seyyed Javadi, ...

We will use S_n Throughout the remainder of the paper, to denote the ring indicated in Lemma 2.1.

Theorem 2.2. If *R* is an abelian p.q.-Baer ring and $n \ge 2$ is a positive integer, then S_n is an *n*-generalized right p.q.-Baer ring.

Proof. We proceed by induction on *n*. It is easy to show that S_2 is a 2-generalized right p.q.-Baer ring. Let I_n be a principal right ideal of S_n . Consider $I_{n-1,1} = \{B \in S_{n-1} | B \text{ is} obtained by deleting <math>n$ -th row and n-th column of a matrix in $I_n\}$, and $I_{n-1,2} = \{B \in S_{n-1} | B \text{ is obtained by deleting } 1 \text{ -th row and } 1 \text{ -th column of a matrix in} I_n\}$, and I_n . It is clear that $I_{n-1,1}$ and $I_{n-1,2}$ are principal right ideals of S_{n-1} . By induction hypothesis and Lemma 2.1($f_i \text{ there ``are} = f_i \in S_{n-1}, f_i^2 = f_i \in R$ for i = 1, 2 such that $r_{S_{n-1}}(I_{n-1,i}^{n-1}) = e_i S_{n-1}, e_i = \begin{bmatrix} 0 & f_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ I_{0-1,0} & \text{or } I_{n-f_i,2} \end{bmatrix}$. Let J be the set of entries of the main diagonal of the elements of $\begin{bmatrix} I_{0-1,0} & \text{or } I_{n-f_i,2} \end{bmatrix}$. It is clear that J is a principal right ideal of R. Since R is right p.q.-Baer, $r_R(J) = f_1 R = f_2 R$. Hence $f_1 = f_2$, since R is an abelian ring. Now let

$$X = \begin{pmatrix} x & x_{12} & \cdots & x_{1n} \\ 0 & x & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x \end{pmatrix} \in r_{S_n} (I_n^n) \text{ and } Y = \begin{pmatrix} a_1 a_2 a_3 \cdots a_n & y_{12} & \cdots & y_{1n} \\ 0 & a_1 a_2 a_3 \cdots a_n & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_1 a_2 a_3 \cdots a_n \end{pmatrix} \in I_n^n$$

Since $r_{S_{n-1}}(I_{n-1,1}^{n-1}) = r_{S_{n-1}}(I_{n-1,2}^{n-1}) = e_1S_{n-1}$, *x* and x_{ij} 's are in f_1R for each *i* and *j* except x_{1n} . So we have $a_1a_2 \cdots a_nx_{1n} + y_{1n}x = 0$. Hence $y_{1n}x = 0$, since $f_1 \in B(R)$. Thus $x_{1n} \in f_1R$ and hence $r_{S_n}(I_n^n) \subseteq eS_n$ for

$$e = egin{pmatrix} f_1 & 0 & \cdots & 0 \ 0 & f_1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & f_1 \ \end{bmatrix} \in S_n$$

Since, for each $Y \in I_n e$, all entries of the main diagonal of Y are zero and e is central, $I_n^n e = (I_n e)^n = 0$. Thus $r_{S_n}(I_n^n) = eS_n$. Therefore S_n is *n*-generalized right p.q.-Baer.

The following result, which generalizes [18, Proposition 6], provides examples of

H. Haj Seyyed Javadi, ...

matrix rings that are both n-generalized p.q.-Baer and n-generalized p.p.-ring:

Theorem2.3. If R is an abelian p.p.-ring, then S_n is an abelian n-generalized p.p.-ring. **Proof.** We prove by induction on *n*. First, we show that the trivial extension S_2 of *R* is 2-generalized right p.p. Let $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in S_2$ and $r_R(a) = eR$, with $e = e^2 \in R$. It is clear that, $fR \subseteq r_{S_2}(A^2)$ with $f = \begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix}$. Next, let $A^2 \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = 0$. Since R is reduced, $a^2x = ax = 0$ and $a^2y = ay = 0$. Hence ex = x and y = ey. Thus $\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = f \begin{pmatrix} x & y \\ 0 & x \end{pmatrix}$. Therefore S_2 is 2-generalized right p.p. Now assume $B = \begin{vmatrix} a & \cdots & a_{2n} \\ 0 & a & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{vmatrix} \in S_n$. Consider $B_1 = \begin{pmatrix} a & a_{12} & \cdots & a_{1n-1} \\ 0 & a & \cdots & a_{2n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix}$ and $B_2 = \begin{pmatrix} a & a_{23} & \cdots & a_{3n} \\ 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a \end{pmatrix}$ in S_{n-1} , then by the induction hypothesis, there exists $e_i^2 = e_i \in S_{n-1}$, $f_i^2 = f_i \in R$, such that $r_{S_{n-1}}(B_i^{n-1}) = e_i S_{n-1}$, $e_{i} = \begin{vmatrix} r_{i} & 0 & \cdots & 0 \\ 0 & f_{i} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_{i} \end{vmatrix} \text{ for } i = 1, 2 \text{ .By direct calculations, we have } r_{S_{n}}(B^{2n-2}) = eS_{n} \text{ with}$ $e = \begin{pmatrix} f & 0 & \cdots & 0 \\ 0 & f & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 2 & 0 & \cdots & f \end{vmatrix} \text{. Since } r_{R}(a) = fR \text{, by } [27, \text{ Lemma 3}], r_{S_{n}}(B^{n}) = r_{S_{n}}(B^{2n-2}) = eS_{n}.$

Corollary 2.4 [18, Proposition 6]. If R is a domain, then S_n is an abelian n-generalized p.p.-ring.

For a semicommutative ring, the definitions of n-generalized right p.q.-Baer and n-generalized right p.p. are coincide:

Proposition 2.5. Let R be a semicommutative ring. Then R is n-generalized right p.q.-Baer if and only if R is n-generalized right p.p.

Proof. Let *R* be *n*-generalized right p.q.-Baer and $a \in R$. Then $r_R(aR)^n = eR$ for some idempotent $e \in R$. Let $x \in r_R(a^n)$. Since *R* is semicommutative, $RaRx \subseteq r_R(a^{n-1})$, which implies that $r_R(aR)^n = eR$. The converse is similar.

There exists an n-generalized right p.q.-Baer ring, which is generalized p.p.-ring but is not semicommutative.

Example 2.6. Let *R* be an integral domain and S_4 be defined over *R*. Then S_4 is abelian 4-generalized p.p.-ring and is 4-generalized p.q.-Baer by Corollary 2.4. By considering $b = a = e_{12} + e_{14} + e_{34}$ and $c = e_{23}$ in S_4 , where e_{ij} denote the matrix units, we have ab = 0, and $acb \neq 0$, hence $aS_4b \neq 0$.

Now we conjecture that subrings of n generalized right p.q.-Baer rings are also n generalized right p.q.-Baer. But the answer is negative by the following.

Example 2.7. For a field *F*, take $F_n = F$ for n = 1, 2, ..., and let *S* be the 2×2 matrix ring over the ring $\prod_{n=1}^{\infty} F_n$. By [7, Proposition 2.1 and Theorem 2.2] we have that *S* is a p.q.-Baer ring. Let

$$R = \begin{pmatrix} \Pi_{n=1}^{\infty} F_n & \bigoplus_{n=1}^{\infty} F_n \\ \bigoplus_{n=1}^{\infty} F_n & < \bigoplus_{n=1}^{\infty} F_n, 1 > \end{pmatrix},$$

which is a subring of *S*, where $\langle \bigoplus_{n=1}^{\infty} F_n, 1 \rangle$ is the *F*-algebra generated by $\bigoplus_{n=1}^{\infty} F_n$ and 1. Then by [7, Example 1.6], *R* is semiprime p.p which is neither right p.q.-Baer (and hence not n-generalized right p.q.-Baer), nor left p.q.-Baer (and hence not ngeneralized left p.q.-Baer).

3. Examples of n-generalized p.q.-Baer subrings

Although the class of n-generalized p.q.-Baer rings, includes all p.q.-Baer rings (and hence, all biregular rings, all quasi-Baer rings, and all abelian p.p. rings), however we show by examples that the class of n-generalized p.q.-Baer rings properly extends the aforementioned classes.

By the following example, there is an abelian p.q.-Baer (hence semiprime) ring R,

which is not reduced, but S_n is an abelian n-generalized right p.q.-Baer ring that is not semiprime.

Example 3.1. By Zalesskii and Neroslavskii [10, Example 14.17, p.179], there is a simple noetherian ring R that is not a domain and in which 0 and 1 are the only idempotents. Thus R is an abelian p.q.-Baer ring that is neither left nor right p.p, and hence is not reduced. By [7, Proposition 1.17] R is semiprime and by Theorem 2.1, S_n is abelian n-generalized p.q.-Baer, that is not semiprime and hence is not right p.q.-Baer.

Example 3.2. If *R* is an abelian p.q-Baer ring, then $R[x]/\langle x^3 \rangle$ is an n-generalized p.q.-Baer ring.

Proof. First we note that $\Theta: T \to R[x]/\langle x^3 \rangle$ defined by

$$(a_0, a_1, a_2) \rightarrow (a_0 + a_1 x + a_2 x^2) + \langle x^3 \rangle$$

is an isomorphism, where $T = \{(a, b, c) \mid a, b \in c \in R\}$ is a ring with addition componentwise and the multiplication defined by

$$(a_1,b_1,c_1)(a_2,b_2,c_2) = (a_1a_2,a_1b_2 + b_1a_2,a_1c_2 + b_1b_2 + c_1a_2).$$

Let *J* be an ideal of *T*. Suppose $I = \{a \in R \mid (a,b,c) \in J\}$, it is clear that *I* is an ideal of *R*. Since *R* is p.q.-Baer, $r_R(I) = eR$ for an idempotent $e \in R$. We can show that $r(J^3) = (e,0,0)T$, and hence, the result follows.

There exists a commutative *n*-generalized p.q.-Baer (hence *n*-generalized p.p.-) ring *R*, over which S_n is not an *n*-generalized p.p.-ring.

Example 3.3. Let $p \neq 3$ be a prime integer and Z_{p^3} be the ring of integers modulo p^3 , and S_3 be defined over Z_{p^3} . Let $A = pI_3 + e_{13}$, where I_3 is the identity matrix and e_{ij} denote the matrix units. It is clear that $pI_3 + e_{13} + e_{12} \in r_{S_n}(A^3)$ and idempotents of S_3 are I_3 and 0. Hence $r_{S_3}(A^3) \neq I_3S_3$ and that S_3 is not 3-generalized p.p.-ring, but Z_{p^3} is a 3-generalized p.p.-ring.

Example 3.4. For every abelian quasi-Baer (resp. p.p.-) ring R, by Theorems 2.1 and

2.2, the ring S_n is n-generalized right p.q.-Baer, which is not right p.q.-Baer. Therefore we are able to provide examples of n-generalized right p.q.-Baer rings that is not right p.q.-Baer:

Let *F* be a field, and R = F[x] be the polynomial ring where *x* is an indeterminate. Then S_n is a n-generalized right p.q.-Baer ring that is not right p.q.-Baer.

Acknowledgement

The authors are deeply indebted to the referee for many helpful comments and suggestions for the improvement of this paper.

Reference

- E.P. Armendariz, A note on extensions of Baer and p.p-rings, J. Austral. Math. Soc 18 (1974) 470-473.
- S.K. Berberian , Baer *-Rings, Grundlehren Math. Wiss. Band 195, Springer: Berlin, 1972, 296.
- G.F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983) 567-580.
- 4. G.F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59 (1992) 319-326.
- G.F. Birkenmeier, J. Kim and J.K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001) 24-42.
- G.F. Birkenmeier, J.Y. Kim and J.K. Park, On quasi-Baer rings, Contemporary Mathematics. 259 (2000) 67-92.
- G.F. Birkenmeier, J.Y. Kim and J. k. Park, Principally quasi-Baer rings, Comm. Algebra 29(2) (2001) 639-660.
- 8. G.F. Birkenmeier, J.K. Park and S.T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, PrePrint.
- 9. S. A. Chase, Generalization of triangular matrices. Nagoya Math. J. 18 (1961) 13-25.
- 10. A.W. Chatters and C.R. Hajarnavis, Rings with chain conditions, Pitman, Boston, 1980.

- 11. A.W. Chatters and W. Xue, On right duo p.p. rings, Glasgow Math. J. 32 (1990) 221-225.
- 12. W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967) 417-424.
- 13. S. Endo, Note on p.p. rings, Nagoya Math. J. 17 (1960) 167-170.
- 14. K.R. Goodearl, Von neumann regular rings; Krieger: Malabar (1991).
- Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002) 45-52.
- Y. Hirano, On ordered monoid rings over a quasi-Baer ring, Comm. Algebra 29(5) (2001) 2089-2095.
- C.Y. Hong, N.K. Kim and T.k. Kwak, Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra 151 (2000) 215-226.
- C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002) 37-52.
- C. Huh, Y. Lee and A Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30(2) (2002) 751-761.
- S.Jondrup, p.p. rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (1971)
 431-435.
- 21. I. Kaplansky, Rings of operators, Benjamin, New York, (1965).
- 22. N.H. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000) 477-488.
- 23. J. Krempa, Some examples of reduced rings, Algebra Colloq. 3(4) (1996) 289-300.
- 24. J. Lawrence, A singular primitive ring, Proc. Amer. Math. Soc. 45 (1974) 59-62.
- 25. A.C. Mewborn. Regular rings and Baer rings, Math. Z. 121 (1971) 211-219.
- 26. A. Moussavi and E. Hashemi, Extensions of Baer and quasi-Baer rings, submitted.
- 27. M. Ohori, On noncommutative generalized p.p. rings, Math. J. Okayama Univ. 25 (1984) 157-167.
- 28. P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970) 127-138.
- M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997) 14-17.
- 30. C.E. Rickart, Banach algebras with an adjoint operation. Ann. of Math. 47 (1946) 528-550.
- 31. L.W. Small, Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967) 656-658.