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Abstract
In this artical, the solution of linear operator equations of first kind is reconstructed with definition of an
optimal method .This method is a combination of optimization theorems and conjugate gradient iteration
preconditioned.ldea of preconditioning over large linear systems is transformed on equivalent problem with
a small condition number,which increases the rate of convergence. Only the case of positive-definite

»Symmetric operators on an inner product space 15 considered . This method can be applied also on compact
operators. Moreover, several numerical examples are given,
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1-Introduction

The main difficulty in solving a Fredholm integral equation of the first kind
b

(L) Kz(s)= [k(s,t)z(t)dt=g(s) , c=s=d

arises from the instability of the (generalized)inverse operator. Tikhonoy [16] proposed

to damp out such oscillations and regularize the solution process by taking as an
approximate solution to the function z that reduces,

1 1
. r P dz(s) ,»
) [ xezs) 9(s))ds+a [ [p(s)27(¢) wq(s) (22L8) )20

where p and q are strictly positive functions and a is a positive parameter . This idea
may be phrased abstractly as the problem of minimizating of the functional

(3) F.(2)=[Kz-g|? +ajz|

where K is a compact operator from a real Hilbert space H, into a real Hilbert space

H,. A family of Tikhonov-type regularization methods for solving(1) has proposed, that
is

4) F.(2)=|Kz-g[*+ajz "' ,n=1,2,...
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Where K is differential operator and n order of derivative . In [15], Marti has shown
hat Sobolev spaces may serve as a tool for a partial regularization of equations of type
1). Where a Sobolev space H ™0,1) ,mz0 is defined as the completion of the set
> ™(0,1)(bounded continuous and m-times bounded continuously differentiable real
unction on (0,1)) with respect to the Sobolev norm given by:

o 1 X
EA D3 J'fti}’{t].dtﬁ , fec®(0,1). Or the norm |.j, of these Hilbert spaces
Tu0 (1]

senerated by the inner product ( , ) defined by:

(£ a~(Y

m
e

1
ffm{:}g‘i!{t}dm , Fecmo,1). LetW, be a subset of H °(0,1) with

£

finite dimension n, and lv,) be a basis of W, . Now we have (1) and we defined :

(5} " Kz n_gu i: (Kz -gl'Kz_g}jm:{Klez}m_Z{Hzlg}m-'-{g‘g}m
Since H° (0,1) is a compact space ,S0 z=ij‘m globally converges to z [6].Now we
n Cjar b
have:
a n
(6) | K= n—glﬁﬁ E xixj{Kvi,Kv‘j]n—z ; x_t{Kvi,g};{g,g}m
al

1,7=1

defining B=[(Kv; ,Kv)).] , W=[(Kvi, £).], M=[(v, V) »] and substituting in (6)we

obtain:
(7 | Kz,- gle = X "BX-2W"X+(g.9)

similarly we have

8 = V)= XTMX

(3) Iz 1 i);;lff“ff}

=50 by (7),(8) and substitution in (3) we have

.

§9} F(X)=X"BX-2W'X+(9.9) X ™MX  (o>0)
E

- 2-Relation between Integral Operator and optimization
&

;% A general quadratic function can be written as

%{11]} E‘{X}=X Tgax-bTX+C (a>0)

E

:

=
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of (10) are as follows .

Theorem 1) Sufficient conditions for a strict and isolated Joca] minimizer o+

iare

that g:a holds and that (G=)* is positive definite ,that is STG=s>p Jor VS0 .
Proof :In [13].

Other main difficulty s solving equatjon (10), to determine €Xact bounds op
regularization Parameter ( that js » sy ) - Kais equal to zerp ip gradient (9)
and x denote €Xact solution | thep we have

T

Bx-W | and we have,
r T

T(x) = Kx- ap(x) , as< -ﬁ% » and by attention to (8)as_*%1 (Letd ) - » Ty, satisfy

x TMx
conditions in [13]). So we have

13) B

i positive definite thep 3
for (9) exists and ** 18 a strict and isolated loca] minimizer.
Proof : Use theorem (1).

Remark: It seems that with identifying bounds for

« ,We can find out the solutions
of an integral equation with compact linear operator

.but it is difficy]t to find out the
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1 « . Also the different values of « have high effects on solutions, hence, it
| be assumed that K is a positive definitive and symmetric, because in this case
m can be stable(see theorem 3).
rem 3) let X and Y be subspaces of an inner product space Z ,and let K:x»v be
a1 ,positive-definite ,symmetric operator .If x satisfies Kx=y ,then it minimizes the
onal

q(x)=(Ex,x) - 2(¥,X)
£:[13]
ther form is assumed to have a coefficient matrix A that is real ,symmetric and
ve definite ,the solution of this system is equivalent to the minimization of the
on

f(x)= -%x*’ﬁ.x—b"x xE€ER" .

. unique solution x* of Ax=b is also the unique minimizer of f(x) as X varies over
he finite tange of X. Let us choose a set of linearly independent

Lel'ltS Vni i=1;2,.--,.ﬂ i ﬂ=1r2r-*- iﬂx

{ minimize q(x) over  X-pan(v). Then write -z,,zi‘ xv,, and have
n nl =1 '

n oo a
.) =?: Y XX DVair Vag) —2; x,(v,;¥) then we have
=1 7=1 =1

g(z) =F(x)=xT6x-2x"b .

iis is a quadratic function ,but probably it is an improperly posed problem .Consider
, if VF(x)<0 , then the linear system to be solved,

) Gx=b ?

ssymed to have a coefficient matrix G that is real and positive definite . The
1ton of this system is equivalent to the minimization of function (16) , where x€&".
.@ll-kncfwu iteration method for finding a minimum for a nonlinear function is the
thod of steepest descent [5]. For minimizing F(x) by this method , assume that an
iat guess x is given. Choose a path and search for a new minimum on it, by checking
dgtions %f theorem 2, it must be VF(xj<0 . We move along the direction
’Iﬁr? F(x,) =g{ %) =¢,=b-6% .then solve the l:::me. dimensional minimization problem

iﬂ-glxa*‘f ), calling the solutiony (by linear search methods [18]).
’O !

k=0,1,2, ... . The method of steepest
slow . The optimal

J@ng it .define the new iteration X =X*tyg
+1

k k

s%nt will converge [5,9] but the convergence is generally quite
o

[a—

VGLS.INU.J.Z..S.JJ’_IW&-QT



https://system.khu.ac.ir/jsci/article-1-1326-en.html

Freconditionend CORETEaE i ad
A et e A B g NS o o B e e bt o e e B R

Bt

local strategy of using a direction of fastest descent is not
an optimal direction for finding the global minimum .In
gradient method(CG) will be more rapid, it will take
assuming there are no rounding errors,

a good strategy for finding
comparison ,the conjugate
no more than n iterations

¥

3 -Preconditioned Conjugate Gradient Method (PCG)

A particular way of obtaining quadratic termination is to invoke the concept of the
conjugacy a set of non-zero vectors st Yy...45™ to a given positive definite matrix

G . This is property that
(18) siiggtdi=g ¥ ig
Theorem 4) A conjugate direction method terminates for a quadratic function in at

Most n exact line search ,and each x%*'is the minimizer in subspace generated by
x'Uand thf:Jr directions st 512, ..., s (that

is the set of points
| x| x= Jr“"*}j v SLA ¥y | ) Proof: In[9].
FalF F
An equivalent geometric definition can be given by introducing a new inner product
and norm for = ":(x,yrx’:qy ;gzr .f‘i_"—x,xi'af xTAx  xcR",

Given a set of conjugate directions S, ...,5m} itisstraightforward to solve Gx=b,
Let x+= ystvy yom, ¥8 ™ using(18),
1 2 n
(T -
{lg} \r= s G x

=2 5%  v.1,2,....n
kgt o gtk RS

We use this formula fors* to introduce the conjugate direction method . let 2 0,

(20) x Ve 101 I D iy I g
1 X

Let ™ Ge® - Vpa®) the residual of x™in Ax=b. Obviously r® = and

(21) x )y L) g k) ko p k1) og (k) o JERG:
x k

For k=n ,we have y- 4+ »r "0 and x may equal x* with a smaller value of k. To
n &

generate the directions different ways can be used, in [9,10] simple method is using

steepest desent method direction. Since
S == VFei)

<0 ,choose the first direction $, as follows:
< . An inductive construction is given for the remaining directions,

Assume x™,_. x® have been generated, along with the conjugate directions

SWs3 . S A new direction §*4must be chosen ,assume x®ax* thus Mg,

[ Downloaded from system.khu.ac.ir on 2024-04-28 ]
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otherwise, we would have the solution x* and there would be no point to continue . By
theorem (3),r®is orthogonal to M~/S™,. S®) . ,®does not belong to M . Putting
§ED=r®+ g $® then the condition §®'GS* -0 implies

k4t )

kY k
(22) o bl i
k-1 S5iETo gk

The error analysis of the CG method is based on the following optimization result.

Theorem 5) The sequence (x®, of the CG method satisfies in

(23) |"x*=x"™ = “min'Fx*-gley b lls
deg(qiG) )<k

Proof : [14] ,(where g(x) is a polynomial ,for example q{}\}=?+ahf?h2).
1

Now, if the eigenvalues of G be denoted by 0<o,<o,<. . .<o, and let u, ... ,u, denote
acorresponding orthonormal basis of eigenvectors . Using this basis, we can write

a n

x*=j\:‘{ Ay, bzfix*?\:‘: a; o u; then

(24) q{.G}b_jZ:aj 0; g(o;)uy
with attention to (23) ,(24) we have :

R 1
25 x*-g(G)b|s= 1~ a2 1) JEs
(25) | x*-g(G)bl, [j};?gx{?qu}n
In [9] we can find better known bounds :
(26) L e el T K )k

I x*lz 1+/¢

where ¢ =0,0, , ¢ is the condition number of G .The bound (26) implies that the CG
methods can converge quit slowly. To increase the rate of convergence ,or at least to
grant a rapid rate of convergence, the problem (17) is transformed to an equivalent
problem with smaller condition number. The bounds in (26), will be smaller and one
expects that the iteration will converge more rapidly.

If we have (17) ,then matrix Q is chosen such that Q is nonsingular, so that we
transform (17) by (0-*eo ) (0%x) =0 b, converted to Gx-b where

6-07'60°T, 07 , b-0b , then m.ud{éi is smaller than m.m:!'(f}'i (see appendix).

Finding Q requires a careful analysis of the original problem (1)and understanding the
structure of G in order to choose Q.If6- ¢ 6 0 with & to be chosen with eigenvalues
near 1 in magnitude, for example ,if ¢ is about the identity I ,then - g o~

Approximate Cholesky factors are used in preconditioners in some cases [11].The
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I x-x°]
{2?) . ‘G <4( fc—l}z.u
I x%-x*| v e+1
&

It has been shown that jf =4 "¢ has p distinct eigenvalues then

CG method converges
in at most P iterations .If we cops;

der the system of equations (17) where G js a

sthen we re-write G=M.N » where M is symmetric

d can solve the System Mz=d
jugate gradient (PCG) method Proceeds as follows:
Algorithm

Generate G, M, b

k=0; x=0 ;riwo_p
Q

while ¢ ® 20)

sofve MZ® 4 (G (H k)
k=k+1
if k=1
S 7o

else
B=(rT" 7 k) WirT* ¥z ez )
;{k}:sz-iJ + B S
end i
rArTZ ) s TG s )
:w xA), o o)
k

r®=ptt) . oom
k
end

x =
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Gyn,m) is also positive definite and also Q is a pxp matrix, construction of
,onditioner should be easy ,but in the case of non-symmetric we can use other
hods [128,12,17). Suppose we wish to solve the system (17) where

In this case matrix G is symmetric and positive definite so

(x,) (5y) ‘
*2 b,
. bl One possibility is to apply the CG method to (17) with |
p ] b,
\ &) \ ©
( \
G, 0 ... o O
0 B sex B
et Lugiingab o 5 Note that the matrix M *(G - M)is 2-cyclic .We obtain
- o Gr B:.
e A
\ /

envalues of M /(G - M) with matrix equation M (G - MJU =Au. Then if U={uu,....uv)"
sy manipulation shows ree

) 2 B{G,v=NQv

nstead of solving (17) directly , we could eliminate xx...x and solve for £. This leads
the system b

r r
). (0-  BIG:' B,)§=c- Y BiGi'b;
% i=1 2=1

f @ is a pxp matrix then we can apply the CG method to (29) .We will obtain, the

N “
=] -

lu%nn in at most p iterations .The matrix 4-Q-J'B G B is the Schur complement of
== Jap 1 i i

ixg'(} and hence A is symmetric and positive definite. Associated with (29) , we can

.o%e a preconditioner M.For example M-I or f:fqg. Note that if EMJJ £+, then the

|

£ -
m%ergence properties of the algorithm are determined by the eigenvalues of M N
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Let M N w=p . Then if M-Q , we have

= . |

(30) JZ.; ii! ffw-v{}w

Hence the eigenvalues of (28) are the squares of eigenvalues of (30). The rate of
convergence of the two procedures are essentially the same, because we are able to
climinate half of the numerical operations. On the other hand Toeplitz matrix arises
in many applications of integral equations. A Toeplitz matrix is constant along its
diagonals and thus , in the Symmetric case , is determined by the n elements of the first
row , ﬁ.., a

a-f

( 4 a ... a a 4
o 1 -3 n-1
a a - | a
1 [} 1 n-2
{31} G= a - . . .
2.
Yo, ™ ] @8

= - S c c,
rﬂ' 1 2 1
cc c . c
L 2
¢ o : 3
2 1
- - - - c
1
\¢ . ¢ c o
o 2 1 1]

oots of unity , systems with circulant coefficient matrix are amenable to solution by the
{ET in O(nlog n) operations -Usually a preconditioner (31) can be obtained as follows:
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rﬂ & aew & an
0 1 2 1
d 4 a - a
1 0 1 2
S=‘-ﬂ - -
2
a . da 8
‘1 1 o

The matrix § is circulant preconditioner for G [4,7].Now , we are in position to
comstruct circulant matrix in linear operator integral equatmn by using periodic splines

[6,7]-

4-Numerical Experimnts

Consider _/' kx -y)ftx) g(x)a=<e, let f be approximated by

=1

£{x}= ¥ au;:' (h %) , B (h ;)-—2( 1 ( ]( -j*ki where x snax(0,x) and.? (h ) are

T
periodic cubic cardinal B-splines with period T=M h and knot spacing h. M is the

number of B-splines. The vector a<(aa, . .., )Tof unknow coefficients is to be
a1 M-

determined. Since B (h i) is periodic on (0,T) ,it has the Fourier series
1]

1 = A i w 2 AT Wz 2
B (49— ¥, %ef +“where w,-[lg and B =[ B (h x)e 7 Idx = [—,;—* 50
o g o o Hr'
2
BB ol -~
f: f., e s @y~ 10,10, j=0,...,M-1the spline in equation f, (x)= E B (k x) has the
g * A-1
§Founer series f{x)-lE _f‘ exp{m x) with Fourier cofficients f = Moremrer
§ Ti= M
§

functions k and g are approximated on (0,T) by:

1N— NI A
f{x)?}j tw{:wn £ g exp(i w )
N g-:-u Ny q

[ Downloaded from system.khu.ac
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g
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g
o

N-1 A N=1

where .i..- =Y kexp(iwx), g =2 exp(i wx} 4=0,1,...N-1 with g{x)?—g(x} Hex) =k =k(x)

L T g n Ndﬂ:ﬁ# A n Nn
and w=-2N—1;q - So we have k* f 8 - Using least square method and Plancherel’s theorem
q

z -'-.

J"‘ i
we have |k«f-g | - E [ k ~¢ ' \with minimizing this functional we have the
N M N2 g Ng Mq Ny

A2 A2 AT
system Ado=b where 4- wH p W, b=W¥# P ang HAX B

A A M-INa A A M-1N-1 A ,."'T -1 1 g=r : . h
B=(EB ) ,K«(k & ) v P(-=5 ) and § - - A is a Toeplitz matrix
ia  ig-0 e gr jgr-o N gr gre0 g g#r

because a- Ea exp(— -ig(r-s)) , a-F;k B [*. If kernel is not smooth then the system
moga) Ng 0g

Aax=b is ill-posed ,s0 for example let A be a Hilbert-Toeplitz matrix ,as follow:
: . A -1
P) A= ))

1 ]

B M-
1) A =(e Wi )
z =0

Now C and S represent ;Tesectively Tony chan’s[4],circulant preconditioner, and S

Strang[3] preconditioner ,then matrices C,S whose entries are given by
i 4 HM-i)a M-1
¢ =t 0. (M1) and § - T (L Y a)Q! where
i M i B pgefmady py
0 . il
L 0
Q<01 .. yWCrdreukg 6., ¢ ) s S=arcuk 55 s,.., 5' } » A=(a=a) .Tables 1 and 2
a1 Af-1 oo 1 ¥
0.. 10

showing that cond(4)> >cond(s 1) =eond(CA) and cond(A)> >cond(S A) Zcond(C1A).
1 1 1 2 z i
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Table 1
M | GudA) | Conds'A) | CondCA)
1 i
3 0.9E01 0.2E01 0.1E01
10 1.1E08 0.6E01 0.2E01
20 8.2E18 0.8E01 0.3E01
100 | 4.7E19 1.1E01 0.4E01
lﬂ H
Table 2
M C.'Jna{Az} Cond S A) | CondC'A)
2 2
3 7.6E01 0.1E01 0.1E01
10 1.1E35 2.1E00 1.3E00
20 »>1.0E1 | 4.3E00 2.7E00

5- Conclusion
We have shown in this paper the difficulty of finding optimal value of regularization
parameter «, in spite of having bound for it . For finding « we have to solve large
system of equations with large condition numbers. By using PCG method we don’t need
to find optimal value of «. Constructing special preconditioner we obtain a system of
equations with a small condition number .We can summarize some advantages of our
algorithm as follows:
(i) Reduction of the order of operations.
(i) Increasing speed and accuracy of algorithm and saving memories.
(iii) Transform to parallel algorithms.
Lhis paper is only a preliminary study with many open problems.

Appendix

2024-04-28

5If function F is the generating function of the matrices A fF) (1.e.F @)= ¥l or 22...) , then
tﬁemam 6 is satisfied.

%mﬁ:m 6 ) Let function F belong to Banach space of all 2= -periodic continues real -

£
Wlued functions ,we have :

Then ofA(F))<f F , F ] or jA(F)=jF J (where o is spectrum of Toeplitz matrix).

[ Dowffoaded
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(i1) Let C(F) be the n-by-n circulant preconditioner ofA4 (F) then C(F)is the

minimizer of /B -4 (F) y over all n-by-n circulent matrices B .
] " F.

n

(iif) Then spectrum of 4 (F) -C(F) is clustered around zero (if F is in the Wiener class).

(iv) Then spectrum of C_,rF}A (F) is clustered around one (if F is in the Wiener class).

(Definition : function F is in the Wiener class if its Fourier coefficients are absolutely

summable ie.: ‘f‘ fa (F) j<e . )Proof [3,4].
kem Ok
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