Search published articles


Showing 3 results for Urban Development

Amir Saffari,
Volume 1, Issue 3 (10-2014)
Abstract

Today, urban and regional issues related to sustainable development is a key challenge for policy-makers, planners and specialists in various disciplines. Geomorphologic studies can be useful and effective in analyzing and deriving acceptable means to assess the growth and development of the city, and to set criteria to determine the directions of urban development.    Landslides range of motions not only affect the human structures such as roads, rail lines and residential areas, but also lead to casualties. Tehran metropolis mountainous basins, including Kan, Vesk, Farahzad, Darake, Velenjak, Darband, Golabdare, Darabad, Sorkheh-Hesar, and Sohanak due to the lithology, geologic structure, weathered sediments, steep slope, rainfall and poor urban development are considered as one of the places where landslides are a range of geomorphologic processes can be studied.    At this research, using Fuzzy and AHP methods and by the use 8 factor variables such as lithology, elevation, slope, aspect, annual rainfall, maximum daily rainfall, distance from fault and drainage system. the map of landslide zonation hazard in mountainous areas of the city is prepared to determine risky strips. After the standardization of the criteria for the occurrence of landslides and using frequency ratio method and fuzzy model and functions, Landslide hazard zonation maps was prepared for evaluating from the fuzzy sum, fuzzy product and fuzzy gamma operator 0.8 and 0.9. Then the final map of landslide zonation, obtained from the above-mentioned method matched with the map of urban regions in mountainous areas. In this way the constructed region have been distinguished from very high and very low hazard zonation.    Lithological studies showed that most of the basin areas covered by Karaj Formation. About 45/7 percent of units with sliding movement in areas with "rock crystal tuff and tuff lytic green, with the layers of limestone" (unit Et2) of the intermediate tuff formation occurred. Cross of faults distance map with landslide density map showed that about 33/1 percent of landslides occurred within 200 m of the fault lines and 78/4 percent of landslides occurred within 500 m of drainage network. Most sliding movements (60/2 percent) in the range of 1900 to 2500 meters altitude and about 35/3 percent of this type of range of motion in height of 1500 to 1900 meters occurred. This area is about 81/6 percent of sliding movements in slopes between 15 and 40 degrees (26/8 to 83/9 percent) and about 17/6 percent on slopes less than 15 degrees (26.8 percent) occurred. In the aspect, sliding movements of the basin, mainly in the south-western slopes (about 23/2 percent), the South (about 17/5 percent), West (about 16/6 percent) and Southeast (about 77/1 percent), northwest (about 33/1 percent) occurred. About 88/9 percent of sliding movements in areas with average annual rainfall of 244 to 280 mm occurred. According to the zoning map, 12 percent of mountainous basins area (approximately 10,057 acres) is in the zone of very high risk, 33 percent (approximately 27,723 acres) is in high risk areas, 20.5 percent (approximately 17,143 acres) in the moderate risk zone, 30/ 7 percent (approximately 25,672 acres) in area and 3.8 percent of the total area of the basin, low risk (approximately 3172 acres) located in low risk areas. The results showed that approximately 5.2 hectares (about 0/05 percent) of the urban in zones with a huge landslide, about 51/5 acre (approximately 1 percent) in zones with high landslide risk and about 821 acres (equivalent to 25/16 percent) in the medium risk landslide zones are located and developed.     The final results indicate that some mountainous regions of Tehran Metropolis are apt to landslide with middle to high risk. (Apart from strengthening the vulnerable area) avoiding these areas is an important solution to decrease damages caused by landslide.


, , ,
Volume 5, Issue 3 (12-2018)
Abstract

Introduction
Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is strong. Above the ABL is the "free atmosphere" where the wind is approximately geostrophic  while within the ABL the wind is affected by surface drag and turns across the isobars. The land use/cover changes affecting the surface radiative forces lead to ABL spatio-temporal variation. The main object of this study is to analysis the association among ABL height and built-up spatial growth in Kermanshah city.  
Data and methods
Multi-temporal satellite images from Landsat imagery data for 1990 to 2015 series of sensors TM, and OLI (Landsat 5 and 8) were taken from USGS database. Data of the Atmospheric Boundary layer height (ABL height) for the city of Kermanshah also were taken during 1990- 2015 from ECMWF – Eran-Intrim website at 0.0125 ° spatial resolution. Firstly, we analysis the temporal trends of ABL height of Kermanshah in summer and winter using linear regression in 0.95 confidence level (P_value = 0.05). The built up area of Kermanshah has been extracted from TM and OLI images using supervised classification method and maximum likelihood classification(MLC) algorithm in GIS image analysis. The Pearson correlation analysis has been used to reveal the relationship between annual ABL height variation and built-up growth of Kermanshah.
 Result
The results of long term trend of Built up growth of Kermanshah that extracted using MLC algorithm as can be seen in figure 1 indicated that the built up area in Kermanshah has been growth by 1.02 square kilometer annually.According the figure 2, The results of annual trend of ABL height in summer and winter also reveals that in summer there is no significant trends in ABL height while in winter the significant increasing long term trend has been observed in ABL height.  


Mr Mehran Mahmoodi, Dr Tajeddin Karami, Dr Vahid Amini Parsa, Dr Ahmad Zanganeh, Dr Seyed Jalil Alavi,
Volume 11, Issue 3 (12-2024)
Abstract

This research employs a systematic review approach to comprehensively evaluate environmental inequalities in Middle East cities. The Middle East, due to rapid urbanization and unsustainable development, faces complex environmental challenges that disproportionately affect low-income and marginalized populations. In this study, 60 scientific articles published between 2013 and 2023 from Scopus, Web of Science, and Google Scholar databases were examined. Statistical analyses revealed that environmental inequalities in this region have been exacerbated by weaknesses in coordinated policymaking and cultural-geographical differences. Temporal patterns indicated an increasing trend in these inequalities over the past decade, while thematic analyses uncovered detrimental impacts on public health, air quality, and access to water resources.Geographical assessments demonstrated that specific areas are more vulnerable to environmental hazards due to climatic and economic conditions. By identifying gaps in existing scientific literature and current policies, this research proposes strategies to enhance environmental justice and improve conditions in Middle Eastern cities. The results of this study can serve as a foundation for developing effective policy strategies and future research in the field of environmental justice in the region. By presenting a comprehensive analytical framework, this research contributes to a deeper understanding of the dynamics of environmental inequalities in the Middle East and paves the way for targeted interventions

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb