Search published articles


Showing 25 results for Dust

Dr Ghasem Azizi, Dr Samaneh Negah, Dr Nima Farid Mojtahedi, Mr Yossef Shojaie,
Volume 10, Issue 1 (5-2023)
Abstract

Abstract
The continuous and expanding process of global warming, especially in the Asian region, has provided the conditions for increasing drought and the spread of desertification. Many deserts had ecologically balanced soil conservation conditions that until recently have become new sources of dust generation now. Numerous examples have occurred in Iran due to its special geographical location among some of the most important deserts in the world. Temperature anomaly (about 8º C) last winter in the Caspian Sea basin has created new dust sources for the southern coastal of the Caspian Sea. On 30-31 May 1400, dust emission was recorded in meteorological stations of Gilan province in terms of area and concentration. The implementation of HYSPLIT chemical backward models shows the emission of dust from the northwestern region of the Caspian Sea to the southern coastal of the Caspian Sea (Guilan province) for the first time with such intensity. The source and origin of this dust was identified in the Rhine desert in the northwest of the Caspian Sea. Continuous and unprecedented warming in the region and accompanied by strong north-south currents provided the conditions for the emission of this dust. Due to the origin of the emitted dust as well as the geographical and topographical conditions of the Caspian Sea basin, the level of this dust was assessed from the ground level to an altitude of less than 1500 meters. Analysis of synoptic conditions using NCEP / NCAR analysis data with 1 degree horizontal resolution indicates the establishment of high pressure air mass with a center of 1018 hPa on the northwestern parts of the Caspian Sea and the penetration of high pressure to the southern coastal areas of the Caspian Sea. Due to the appropriate pressure gradient and increasing wind speed, dust-producing springs are formed on the desert areas of the Rhine and with the dominance of the northern currents (south-south), the dust mass is sent to Gilan province.

Keywords: Global Warming, Dust emission, Russian Rhine Desert, Gilan.



 
Hasan Jems, Saman Maleki, Abuzar Nasiri, Soraya Derikvand,
Volume 10, Issue 1 (5-2023)
Abstract

1- Introduction
Desert dust is formed under the influence of the special weather and environmental conditions of desert areas, enter the atmosphere. Localized hurricanes caused by ground air instability and sweeping dry deserts clear silt and sand particles enter the atmosphere from the surface. Ecologically as well as physically desert dust Effects such as pulmonary heart disease, disruption of plant physiological circulation, and erosion of growing structures include heavy metals deposited on soil surfaces, water surfaces, and canopies Plant surfaces that cause chemical changes and physiological damage to environmental ecosystems. Difficult Metal generally refers to a group of metal elements with a specific gravity of 6g/cm3 or more. Atomic weight greater than 50 g. Heavy metals important from an environmental point of view Cadmium, arsenic, cobalt, vanadium, zinc, mercury, iron, manganese, nickel, lead, chromium, copper, that do not decompose naturally. In addition, the long life of heavy metals is also considered. In the studies that have investigated the effect of dust on citrus fruits, it has been very few and even garden plants have been done on a case-by-case and limited basis. Citrus and especially oranges are one of the important and economic garden products in Iran, which are cultivated in tropical areas with mild and cold winters. Khuzestan plain, especially Dezful, is one of the poles of citrus and orange cultivation. But in Khuzestan, it is under the influence of many environmental stresses, which can be mentioned as drought stress and air pollution in the region. The rising trend of the phenomenon of desert dust in recent years has been shown as a danger and its effect on the environmental health and economy of the region is very severe, and the most damage has been reported to the agricultural sector. Although the damage caused by micro-pollens to the agricultural sector is expressed as an economic figure, the effect on plants, especially citrus fruits, remains unknown. Although researchers have studied the effect of fine dust on sugarcane, grapes, legumes, nectarines and peaches in Iran, India and Pakistan, the effect of fine dust on vegetative traits and orange fruit has not been investigated in Khuzestan. Considering that the first step in controlling the effect of air pollution on plants and horticultural crops is to know how it affects the plant, on this basis, the main goal of the current research is to reveal and evaluate the effect of micro-pollens. Desert is on vegetative and reproductive characteristics of Thomson orange in Dezful.


2- Methodology
In order to evaluate the effect of desert pollen on the quantitative and qualitative yield of orange fruit, Thomson variety, a field experiment in the form of randomized complete block design with four treatments and three replications was carried out in Dezful in 2018-2019. The treatments included 1) road dust and desert fine dust, 2) desert fine dust, 3) washing after the occurrence of fine dust and 4) control away from fine dust. The chemical and functional characteristics of the trees were measured after applying the treatments, which included chlorophylls a and b, relative water content of the leaves, number of fruits, diameter and weight of the fruit, soluble solids of the fruit and the final yield of the tree.

3- Results
The results showed that chlorophyll a decreased by 21% and 11%, respectively, in the road dust and desert fine dust treatments compared to the control. Chlorophyll b also decreased to the same amount compared to the control. The diameter of the fruit also decreased by 20% in the desert dust treatment compared to the control. The number of fruits per tree also decreased by 22 and 20% in the treatments of pollen and fine desert dust compared to the control. In the product yield of each tree, in the treatments of road dust combined with desert fine dust and the second treatment, which was only desert fine dust, it decreased by 22 and 17 percent, respectively, compared to the control. Tukey's mean comparison showed that the difference of all quantitative and qualitative characteristics between the treatments was significant and Desert dust has a negative and decreasing effect on the yield of Thomson orange trees; However, washing the trees after the occurrence of micro-pollen removed the effects of micro-pollen on the performance of trees and it even increased compared to the control; So, washing increased the yield of oranges by 40, 35, and 12 percent compared to the first and second treatments of road dust and fine dust, as well as the control.

4- Discussion & Conclusions
Plant growth cycle and biochemical interactions of plants show different reactions under the influence of environmental stresses. The results of previous studies indicated that fine dust and dust storms have been identified as an environmental stress for plants that have a negative effect on grapes, medicinal plants, sugarcane, nectarines, peaches and legumes. The effect of fine dust on the plant can be investigated in several characteristics and periods of plant phenology. In the first stage, the deposition of desert fine dust on the leaves of the plant causes shading and reducing the light received by the leaf pigments. Fruit formation is the most important phenological period of the plant, and the occurrence of environmental stress can affect the yield and products of the plant. The present research showed that the number of fruits in orange trees showed sensitivity to desert pollen and the settling of soil particles on orange flowers reduced the amount of fruit formation and finally the number of healthy and ripe fruits in the trees treated with road dust and Desert fine dust decreased compared to the control. Finally, the yield of control orange trees decreased by 17% and 22%, respectively, compared to desert dust and road dust treatment with desert dust. The yield of cotton plants in China decreased by about 28% compared to Desert dust. It can be concluded that although desert dust and road dust reduce the yield of Thomson orange fruit, washing it compensates for the damage and will be economical from the economic point of view.

Key words: Citrus, Photosynthetic pigments, Fruit yield, Dust, Dezful

 
Kaveh Mohammadpour, Ali Mohammad Khorshiddoust, Gona Ahmadi,
Volume 10, Issue 2 (9-2023)
Abstract

Introduction
Dust storm is a complex process affected by the earth-atmophere system. The interaction between the earth and atmosphere is in the realm of the climatologists and meteorologists, who assess atmospheric and climatic changes, and monitor dust spread. Dust is the main type of aerosols which affects directly and indirectly radiation budget. In addition, altogether they affect the temperature change, cloud formation, convection, and precipitation. The most important studies about dust analysis have considered the use of remote sensing technique and global models for analyzing the behavior and dynamics of dust in recent two decades. To achieve such a goal, this paper has used MODIS and NDDI data to study and identify the behavior of atmospheric dust in half west of Iran.

Materials and methods
The western region of Iran is the study area. The data used in this study are divided into two categories: ground-based observations in 27 synoptic stations extracted from the Iran’s Meteorological Organization during the period (1998-2010) and satellite MODIS images during the first to fourth days of July 2008 as atmospheric dust extremes. Data was analyzed by using ArcGIS and ENVI software and NDDI index. 
Results and Discussion
According to results, interpolated map for the number of dusty days during the study period over the western half of Iran showed that the scope of study area does not involve an equal system aspect quantity of occurrences. The number of dusty days occurrences increase from north toward south and the sites located in northern proportions of the area have experienced lower dust events. In contrast, maximum hotspots are occurring over southwestern sites such as: Ahvaz, Ilam, Boushehr and Shiraz. Therefore, principal offspring of dust input has been out of country boundaries and arrived at distant areas. Also, based on results obtained using satellite remote sensing images and applied NDDI index, maximum of intense dust cover is observed over Fars, Ilam, Boushehr and Ahvaz provinces on the first, second, third and fourth of July. However, the lowest rate of index situated in extent far such as: East and West Azerbaijan provinces. Thus, parts located on the north of the study area experienced less dusty days and the maximum dust cores were located in the southwestern (mostly Khuzestan). The long-term results were consistent with the daily average of NDDI index in the whole study area and indicated the hotspot areas (Ilam, Ahvaz, Omidyeh, Bushehr and Shiraz) during the first to fourth days of July 2008. However, the level of dust cover in the region has reduced when a wet and cloudy synoptic system passes over the central and northwestern parts of the study area.
Conclusions
The climatic interpolated map interpretation indicated that increase of dust concentration based on ground-based stations, which are consistent with dust concentration, is overshadowed by the latitude and proximity of sources of dust source in the Middle East. Also, the long-term climatic results of ground-based observations were consistent with the NDDI index calculated on dust extremes in the whole study area and in the southern areas (Ilam, Ahvaz, Omidyeh, Bushehr and Shiraz) during study days of July, 2008. Therefore, dust occurrence increases from north to south and the maximum hotspots over southwestern confirm the proximity of the south western region of Iran to deserts and sedimentary plains and their direct relationship with dust sources in the Middle East. These regions highlight the volume and expansion of dust outbreaks, which were well detected due to the satellite imagery and spectral characteristics of MODIS for monitoring changes in the dust phenomenon.
Overall, the use of satellite remotely sensed data/images not only cover the ground-based observation datasets gap to identify, highlight, and analyse the dust phenomenon, but also takes a much more geographical approach in analysing environmental hazards such as dust. It is also suitable for studies of atmospheric compounds such as atmospheric aerosols.

Mohammad Sadegh Ghadam Khair, Reza Borna, Jafar Morshedi, Jebraeel Ghorbanian,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction
Extensive and massive agriculture, along with other agricultural activities such as animal husbandry, industrial activities in the southern half of the province, has created and intensified extensive changes in the environmental resources and natural structure of the province. This extensive change can show its effects and consequences in the destruction of forest lands, the transformation of rich pastures into poor pastures and barren lands, severe soil erosion, and finally the creation and development of internal centers of dust. and intensify the severity of dust incidents in the province. Dust events have profound and significant effects on agriculture and soil fertility, health and hygiene, disruption and destruction of industries and power plants, and negative effects on the environment, including the deterioration of forests. Airborne particles, which are mainly driven to the region by dust storms, are one of the important components of the atmospheric system. They can not only change the albedo of the energy balance by acting as cloud particle nuclei, or ice nuclei.
Materials and Methods
The study location of this research is Khuzestan province, which is one of the most challenging provinces in the country in terms of environmental hazards. This province, with an area of about 6.5 million hectares, occupies about 4% of the country's area. Dust is one of the major and most important challenges of this province. Its destructive effects can be traced in various dimensions, such as the quality of water resources, the quality and performance of agricultural products, industries and energy transmission networks, and the air quality of cities. Three categories of data have been used in this research. The data of the first category is related to the data of widespread dust days in Khuzestan province. These data were obtained from the dust codes of the current air condition (ww parameter of synoptic stations of the province) during the statistical period of 2000, 2020. The second category of data was actually the remote sensing data of MODIS sensor, which included the Aerosol Optical Depth (AOD) product of MODIS sensor (MOD04 product) and Aerosol Exponential Index (AEA). These two indicators are dimensionless but with different directions. In the AOD index, higher numbers represent more aerosols in the atmosphere and in the AEA index, in addition to the presence of dust in the place, it also provides the size of the aerosol particles. Finally, the third category of data is the reanalysis data related to incoming net shortwave radiation (SNSR), which was taken from the reanalysis data of the European ECMWF database version ERA5 with a spatial resolution of 0.5 arc degrees.­



 Conclusion
In this research, it was tried to investigate the influence of the dust event in the context of fluctuations and daily changes in the amount of net shortwave radiation received on the earth's surface. The results of the investigation of three cases of widespread dust in the province showed that in these three cases of widespread dust, aerosol particles are generally in the central, southern and western parts of the province (plain and lowland areas of the province) from the type of medium to large particles (index angstrom between 0.5 and 1) and in the eastern and northeastern parts, it was of the type of coarse particles (angstrom index less than 0.5). In the context of the impact of dust events on the amount of shortwave radiation received by the earth's surface, it was seen that in the dust event of July 22, 2010, the Angstrom exponential index indicates the presence of coarse particles in the atmosphere near the earth's surface and the AOD index also indicates the presence of dense dust in the entire area of the province. The received net shortwave radiation (at 12 noon or 09 UTC) was about 194 watts per square meter (about 28 percent) lower than the average for the same month. This drop rate was less in the other two dust waves, whose AOD and Angstrom index values indicated finer and less concentrated dust. In the dust wave of June 19, 2012, the amount of net shortwave radiation received was only 5% (25 W/m2 at 12 noon or 09 UTC) less than the long-term average, and this drop in the dust event of May 12, 2018 was equal to 28 W/m square (about 4% drop compared to the average of the same month).

Ms. Tahmineh Chehreara, Miss Somayeh Hajivand Paydari,
Volume 10, Issue 4 (12-2023)
Abstract

Identification of dust centers and, of course, the behavior of this phenomenon in different regions creates one of the problems of the last few decades, which is investigated as a hazard. To this end, statistics from 15 meteorological stations in the northeastern region of Iran, including North Khorasan, Razavi Khorasan, and South Khorasan provinces, were used over a 17-year period (2016-2000). To clarify the mechanisms governing dusty days, the meridional and zonal wind components and geopotential height were obtained by referring to the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). HYSPLIT model and MODIS AOD values were used to track and identify dust centers. The results showed that during the warm season, due to the establishment of a strong quasi-stationary blocking system in the lower levels of the atmosphere, negative vorticity increased in the maximum air descent area, ultimately leading to the dominance of a northern flow for the region. Anomalies in geopotential height and vorticity were identified, and three dominant abnormal patterns were found in the occurrence of maximum dust storms in the region. An increase in geopotential height of more than 5 to 10 geopotential meters and an increase in negative vorticity are considered major conditions. By examining the tracking model and using satellite data, five main centers that affect over 90% of the region's dust storms were identified, among which Turkmenistan has a significant role with two separate centers and one common center with Uzbekistan in the occurrence of summer dust storms in northeastern Iran.
 

Page 2 from 2     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb