جستجو در مقالات منتشر شده


1 نتیجه برای تام نیا

دکتر جواد سدیدی، خانم فاطمه تام نیا، دکتر هانی رضائیان،
دوره 11، شماره 1 - ( 3-1403 )
چکیده

یادگیری عمیق یک روش مدرن پردازش تصویر و تجزیه و تحلیل داده هاست که با داشتن نتایج امیدوار کننده و پتانسیل بالا وارد حوزه مدیریت شهری شده است. پروژه (OSM)Open Steet Map بزرگ‌ترین مجموعه ‌داده های مکانی داوطلبانه است که در بسیاری از حوزه‌های کاربردی مختلف به ‌عنوان مکمل یا جایگزین با داده‌های مرجع استفاده می‌شود. در بعضی از موارد در کشورهای پیشرفته دقت داده‌های داوطلبانه تولید شده توسط موبایل و دیگر ابزار توسط کاربران حتی بیش از داده ی مرجع دولتی می‌باشد. هدف از تحقیق حاضر ارزیابی استفاده از هوش مصنوعی در تکمیل داده های داوطلبانه در مناطق کمتر مشارکت شده توسط داوطلبان می باشد. ابتدا با استفاده از شبکه عصبی کانولوشنی Res_UNet کاربری اراضی با دقت 83 درصد به دست آمد، سپس با توجه به پیش‌بینی انجام شده، از روش واحد مبنا جهت ارزیابی میزان کامل ‌بودن داده‌های OSM  استفاده شد. نتایج نشان می‌دهد میزان کامل ‌بودن بلوک‌های ساختمانی OSM در کل منطقه مطالعاتی برابر با 6/3 درصد، جنگل‌ها7/9درصد، درخت‌های میوه 4/90 درصد و زمین‌های کشاورزی 88/81درصد می‌باشد. که نشان از نرخ پایین کامل‌ بودن بلوک‌های ساختمانی و جنگل و نرخ بالای کامل‌ بودن زمین‌های کشاورزی و درختان میوه می‌باشد. نتایج تحقیق بیانگر درصد مشارکت پایین داوطلبانه درتولید داده‌های مکانی می‌باشد. از طرفی دقت بالای تولید کاربری اراضی توسط هوش مصنوعی نتایج امیدوارکننده‌ای را در استفاده از هوش مصنوعی در تولید و تکمیل داده‌های داوطلبانه به ‌جای نیروی انسانی بخصوص در کشورهای کمتر توسعه‌یافته یا مناطق با جمعیت داوطلب کمتر یا نقاط دورافتاده و صعب‌العبور ارائه میدهد


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb