XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

karegar M E, Bodagh Jamali J, Ranjbar Saadat Abadi A, Moeenoddini M, Goshtasb H. Simulation and Numerical Analysis of severe dust storms Iran East . Journal of Spatial Analysis Environmental Hazards 2017; 3 (4) :101-119
URL: http://jsaeh.khu.ac.ir/article-1-2658-en.html
1- , elham.karegar92@gmail.com
Abstract:   (10038 Views)

Dust particles are important atmospheric aerosol compounds. The particles are resulting performance of strong winds at the soil surface desert areas. Sources of dust are 2 types: 1- Natural Resources 2- Human Resources. Iran is located in the desert belt which this problem cause increased the frequency of dust storms, especially in South East (Sistan) and South West. China Meteorological Administration Center classifies storms based on particles type, visibility and speed storms to 4 kind: Floating Dust, Blowing Dust, Sand/Dust Storm and Sever Sand/Dust Storm. In general, the effects of dust storms in 7 of Environment (particles into remote areas, the effect of dust particles on the material, climate, oceans and deserts), public health and health (increase of respiratory diseases , cardiovascular problems, digestive, eye, skin, reduced hearing, infections, reduced life expectancy and premature death, etc.), economic (unemployment, road accidents, damage to communication lines, air, land, sea, increase water turbidity in water utilities, creating uncertainty for all economic activities, etc.), Agriculture and Livestock (negative effect on the growth of plants and animals, reduced productivity and diversification, intensification of plant and animal pests and diseases, rising costs maintenance of livestock, etc.), socio-cultural (poverty and the loss of local jobs, destruction of subcultures, rural migration to the cities, closure of educational premises, industrial units, services, etc.) and military-security (disabling weapons, food and beverage contamination, the threat of sensitive electronics and power transmission systems, and reduce the useful life sitting on warehouse equipment, logistics cargo weight gain, etc.) can be evaluated. One way to identify, evaluate and forecast dust storm modeling. Dust cycle consists of 3 parts, dust emissions, dust and subsidence transfer dust that can be simulated by models.

In this study using the WRF_Chem model with FNL[1] input data and GOCART schema, sever dust storm in Sistan region was simulated to date 14 & 15 July 2011. Satellite images of the event was received by the MODIS sensor. Dust concentration data was received from the Department of Environment. The dust storm code, minimum visibility data and maximum wind speed data was received from the, Meteorological Organization.

The results of the simulation for dust concentration which peak amount of dust was for 21Z14July2011 and 03Z15 July 2011. Model output showed maximum wind speed 20 m/s with North to South direction in the study area. The model predicts maximum dust concentration for the latitude 31 degree North and longitude 54 degree East to 66 degree East (Within the study area). MODIS sensor images showed clearly the sever dust storm. Simulated time series in Figure 3-1 Changes in dust concentration during the event show in the Sistan region. As can be seen from the peak of the concentration of dust in 21 hours on 14 July (350 micrograms per cubic meter) and 03 hours on 15 July (425 micrograms per cubic meter) 2011 was created. Model simulation and satellite images indicated which the Sistan region, especially dry bed of Hamoun wetland in East of Iran was main source of sand and dust storm. Also, based on the model output blowing wind direction from North to South on Iran which converging these currents in East Iran caused by strong winds in the lower levels (According to the meteorological data), arise dust, increasing the dust concentration (According to Department of Environment data), increasing the dust and being transferred to the Southern regions, especially  Oman sea. To identify the source of the sand and dust storm, the path of the particle and anticipated this event cant actions and warned to stop and reduce effects its. . Simulation of dust particles in the resolution of 10 and 30 kilometers, the plains of Sistan in Iran's East region as the main source screen. The findings suggest that compliance with the maximum concentration limits on known sources of particles (especially Sistan plain dry bed of plain wetlands) is. Check drawings wear rate showed that the source of dust in the Sistan region, particularly the high potential of our wetlands dry bed of soil erosion in wind activity 120 days during the hot and dry conditions, and silt and clay up to thousands of kilometers away from their source transfers. Vector lines on maps wear rate, indicative of converging flow north-south and severe dust storms in history is this. It is better than models forecast dust events and rapid alert


[1] Final Reanalysis

Full-Text [PDF 1375 kb]   (6383 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/04/25 | Accepted: 2017/04/25 | Published: 2017/04/25

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb