دوره 10، شماره 4 - ( 10-1402 )                   جلد 10 شماره 4 صفحات 224-209 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

yousefi Z, Jahantigh H, Zolfaghari F. Assessment of desertification Severity in Morad Abad - Saravan Plain using Albedo-NDVI model. Journal of Spatial Analysis Environmental Hazards 2023; 10 (4) :209-224
URL: http://jsaeh.khu.ac.ir/article-1-3438-fa.html
یوسفی زیبا، جهان تیغ حسین، ذوالفقاری فرهاد. ارزیابی شدت بیابان زایی در دشت مرادآباد - سراوان با استفاده از مدل Albedo-NDVI. تحلیل فضایی مخاطرات محیطی. 1402; 10 (4) :209-224

URL: http://jsaeh.khu.ac.ir/article-1-3438-fa.html


1- مجتمع آموزش عالی سراوان
2- مجتمع آموزش عالی سراوان ، zol.farhad@gmail.com
چکیده:   (1531 مشاهده)
بررسی و پایش پدیده بیابان‌زایی در منطقه‌های خشک و نیمه‌خشک باتوجه‌به افزایش روزافزون این پدیده، یکی از نگرانی‌های اساسی جوامع و دولت‌های درگیر مسئله بیابان‌زایی است. ازطرفی شناخت مناطق در معرض خطر پدیده بیابان‌زایی جهت مدیریت و کنترل این پدیده در کمترین زمان ممکن و حداقل هزینه از ضروریات است. هدف از این مطالعه، تهیه نقشه شدت بیابان‌زایی در دشت مراد آباد سراوان با استفاده از مدل Albedo-NDVI است. این روش بر مبنای سنجش از دور استوار است. برای تهیه دو شاخص مورد اشاره پس از تصحیحات لازم بر روی تصاویر ماهواره‌ای لندست 8 دو شاخص Albedo و NDVI در نرم‌افزار  Erdas Imaging  استخراج گردید. برای بررسی رابطه بین دو شاخص مورد بررسی تعداد 200 پیکسل متناظر از هر شاخص انتخاب و رگرسیون خطی بین آنها تشکیل گردید. بر اساس ضریب شیب خط حاصل از رگرسیون خطی، معادله تعیین شدت بیابان‌زایی بدست آمد و بر اساس ضریب شکست طبیعی جنکس نقشه شدت بیابان‌زایی تهیه شد. همچنین برای ارزیابی دقت مدل با مطالعات قبلی بر اساس مدل میدانی IMDPA یک ماتریس بهم ریختگی بین 100 نقطه متناظر تشکیل گردید. نتایج حاصل از رگرسیون خطی بین دو شاخص  NDVI  و Albedo  نشان داد که این دو شاخص با یکدیگر همبستگی منفی بالایی دارند (85/0- =R ). نتایج حاصل از طبقه‌بندی شدت بیابان‌زایی بر اساس این مدل نشان داد که 35درصد منطقه در کلاس خیلی شدید و تنها 5 درصد منطقه بدون تخریب قرار دارد. همچنین مقدار مقدار دقت مدل با ضریب کاپای معادل 58/0 بدست آمد، که بیانگر دقت خوب مدل می باشد.
 
متن کامل [PDF 672 kb]   (327 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1402/5/18 | پذیرش: 1402/9/7 | انتشار: 1403/2/23

فهرست منابع
1. آرامش میثم؛ ولی عباسعلی؛ رنجبر ابوالفضل. 1401. ارزیابی تغییرات پوشش سطح زمین و تخریب اراضی با استفاده از تکنیک سنجش از دور در شمال استان اصفهان (مطالعه موردی: کاشان، آران و بیدگل). تحقیقات مرتع و بیابان. 29(2): 146-160.
2. حبیبی علیرضا؛ شادفر صمد؛ صادقی معصومه. ۱۳۹۳. بررسی شدت بیابان‌زایی در رخساره‌های ژئومورفولوژی با استفاده از GIS در استان خوزستان. نشریه تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی). 14(32): ۱۴۱-۱۵۹.
3. ذوالفقاری فرهاد؛ عبداللهی وحیده. 1401. تعیین مناسب ترین شاخص پوشش گیاهی برای تهیه نقشه شدت بیابان زایی در مناطق خشک به کمک تصاویر سنتینل. مدیریت بیابان. 10(1): 1-14.
4. رایگانی بهزاد؛ زهتابیان غلامرضا؛ براتی سوسن. نقدی بر مدل ایرانی پتانسیل بیابان زایی (IMDPA). بوم شناسی کاربردی. 2(4): 99-73.
5. رنجبر ابوالفضل؛ ولی عباسعلی؛ مکرم مرضیه؛ تاری پناه فریده. 1398. بررسی روند تغییرات زمانی- مکانی پوشش گیاهی و واکنش آن به عوامل محیطی در شمال استان فارس، ایران. سنجش از دور و GIS ایران. 11(4): 61-82.
6. شکوهی الهام السادات؛ زهتابیان غلامرضا؛ طویلی علی. ۱۳۹۱. پهنه‌بندی وضعیت بیابان‌زایی منطقه خضرآباد اله آباد دشت یزد با استفاده از مدل IMDPA و با تأکید بر معیارهای آب و خاک. نشریه مرتع و آبخیزداری. 65(4): ۵۱۷-۵۲۸.
7. کفاش عباس؛ روحی مقدم عین اله؛ افشاری اعظم؛ ذوالفقاری فرهاد. 1397. بررسی میزان تاثیر معیارهای اقلیم، پوشش گیاهی، فرسایش بادی و خاک در ارزیابی پتانسیل بیابن زایی با استفاده از GIS (مطالعه موردی: منطقه مرادآباد سراوان). پژوهش های نوین علوم جغرافیایی، معماری و شهرسازی. 2(14).
8. کوهبنانی حمیدرضا؛ دشتی امیرآباد جمال؛ نیکو شیما؛ تایا علی. ۱۳۹۶. پهنه‌بندی شدت بیابان‌زایی با استفاده از رویکرد منطق فازی (مطالعه موردی: دیهوک طبس). فصل‌نامه علمی - پژوهشی پژوهش‌های فرسایش محیطی. 7(1): ۳۵-۴۹.
9. نیک پور نورالله؛ نگارش حسین؛ فتوحی صمد؛ حسینی سید زین العابدین؛ بهرامی شهرام. 1397. پایش روند تغییرات شاخص پوشش گیاهی (NDVI)، یکی از مهمترین شاخص های تخریب سرزمین ( در استان ایلام). تحلیل فضایی مخاطرات محیطی. ۵(4): ۲۱-۴۸.
10. هاشم گلوگردی ساره؛ ولی عباسعلی؛ شریفی محمد رضا. 1400. بررسی روند بیابان زایی در مرکز استان خوزستان با استفاده از داده های سری های زمانی سنجش از دور. تحقیقات آب و خاک ایران. 52(11): 2857-2843.
11. Allen, R., Tasumi, M., Trezza, R., (2002), Surface Energy Balance Algorithms for Land. Advanced Training and User’s Manual Idaho Implementation.
12. Aramesh, M., vali, A. A., Ranjbar, A., (2022). Assessment of land cover change and desertification using remote sensing technology in north of Isfahan province (Case study: Kashan, Aran and Bidgol). Iranian Journal of Range and Desert Research, 29(2).
13. Cai, G., Du, M., Liu, Y., (2010), Regional drought monitoring and analyzing using MODIS data—a case study in Yunnan Province. In Proceedings of the 4th IFIP International Federation for Information Processing. 345: 243–251.
14. FAO/UNEP., (1980), Provisional methodology for assessment and mapping of desertification. Romp.
15. Guo, B., Zang, W.Q., Luo, W., Wen, Y., Yang, F., Han, B.M., Fan, Y.W., Chen, X., Qi, Z., Wang, Z., Chen, S. andYang, X., (2020), Detection model of soil salinization information in the Yellow River Delta based on feature space models with typical surface parameters derived from Landsat8 OLI image. Geomatics, Natural Hazards and Risk, 11(1): 288–300.
16. Habibi, A., Shadfar, S., & Sadeghi, M., (2014). investigation severity of desertification in geomorphology facies using with GIS in Khuzestan province. journal of Geographical Sciences, 14(32), 141-159.
17. Hadeel, A., Jabbar, MT., Chen, X., (2010), Application of remote sensing and GIS in the study of environmental sensitivity to desertification: a case study in Basrah Province, southern part of Iraq. Applied Geomatics, 2(3): 101-112. 27.
18. Hakimzadeh, M. A., (2014), Assessment of Desertification Risk in agricultural land in south of Iran. International journal of Advanced Biological and Biomedical Research, 2(3): 669-681.
19. Hashem Geloogerdi, S., Vali, A. A., Sharifi, M. R., (2022), Investigation of Desertification Trend in the Center of Khuzestan province Using Remote Sensing Time Series Data. 52(11): 2843-2857. (In Persian).
20. Jafari, R., Bakhshandehmehr, L., (2016), Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degrad. Dev. 27(2): 108-119.
21. Kaffash, A., Rouhimoghadam, E., Afshari, A., Zolfaghari, F., (2018), Investigation the effects of Climate, Vegetation, Wind Erosion and Soil Criteria on desertification Potential Using GIS (Case Study: Moradabad Saravan Regio). Journal of Geographical New Studies, Architecture and Urbanism. 2(14): 15-29. (In Persian).
22. Karnieli, A., Qin, Z., Wu, B., Panov, N., Yan, F., (2014), Spatio-Temporal Dynamics of Land-Use and Land-Cover in the Mu Us Sandy Land, China, Using the Change Vector Analysis technique. Remote Sensing. 6: 9316-9339.
23. Koohbanani, H., Dashti Amirabad, J., Nikoo, Sh., Taya, A., (2017), Desertification-Intensity Zoning through Fuzzy-Logic Approach: A Case Study of Deyhook-Tabas, Iran. Environmental Erosion Researches. 7(1): 35-49. (In Persian).
24. Lamchin, M., et al., (2017), Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability Journal. 9(581). doi:10.3390/su9040581.
25. Landsat 8 (L8) Data Users Handbook, June (2015), Approved By K. Zanter Lsds Ccb Chair Usgs. Version 1.0. https://www.greenpolicy360.net/mw/images/Landsat8DataUsersHandbook.pdf
26. Liu, F., Chen, Y., Lu, H. and Shao, H., (2017), Albedo indicating land degradation around the Badain Jaran Desert for better land resources utilization. Science of the Total Environment, 578: 67–73.
27. Ma, Z., Xie, Y., Jiao, J., & Wang, X., (2011), The construction and application of an Aledo-NDVI based desertification monitoring model. Procedia Environmental Sciences, 10: 2029-2035.
28. Nikpour, N., negaresh, H., Fotoohi, S., Hosseini, S, Z., Bahrami, S., (2019), Monitoring the trend of vegetation changes one of the most important indicators of land degradation (in Ilam province). Journal of Spatial Analysis Environmental Hazards, 5(4): 21-48.
29. Pan, J., Li, T., (20130, Extracting desertification from Landsat TM imagery based on spectral mixture analysis and Albedo- Vegetation feature space. Nat Hazards. 68: 915–927.
30. Piña, R. B., Díaz-Delgado, C., Mastachi-Loza, C. A., González-Sosa, E., (2016), Integration of remote sensing techniques for monitoring desertification in Mexico. Human and Ecological Risk Assessment. 22(6): 1323-1340
31. Ranjbar, A., Valia, A., Mokarramb, M., and Taripanahc, F., (2020), Analyzing of the spatio-temporal changes of vegetation and its response to environmental factors in north of Fars province, Iran. Journal of Remote sensing & GIS, 11(4): 61-82 (In Persian)
32. Rayegani, B., Zehtabian, G., Barati, S., (2013), Surveying of Iranian Model of Desertification Potential Assessment. Iranian Journal of Applied Ecology, 2(4): 73-99.
33. Shokoohi, E. S., Zehtabian, Gh. R., and Tavili, A., (2013), Study of desertification status using IMDPA model with emphasis on water and soil criteria (Case study: Khezr Abad - Elah Abad of Yazd - plain). Iranian Journal of Natural Resources, 65(4): 517-528.
34. UNCCD (United Nations Convention to Combat Desertification)., (2010), Recommendations and Conclusions of the African Regional Conference Preparatory to the First Session of the Committee for the Review of the Implementation of the United Nations Convention to Combat Desertification (UNCCD–CRIC1). Secretariat of the Convention to Combat Desertification: Windhoek, Namibia
35. Wang, Y., Zhang, J., Guo, E., & Sun, Z., (2015), Fuzzy Comprehensive Evaluation Based Disaster Risk Assessment of Desertification in Horqin Sand Land, China. International Journal of Environmental Research and Public Health, 12: 1703 –1725.
36. Wei, H., Wang, J., Han, B., (2020), Desertification Information Extraction Along the China–Mongolia Railway Supported by Multisource Feature Space and Geographical Zoning Modeling. IEEE Journal of selected topics in applied earth observations and Remote Sensing. 13: 392-402.
37. Ya, Z., Xue, S., WangWen, R.J., Chun, L.Z., Qing, L. and Jiao, L., (2018), Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Sci Total Environ, 620:1648–1659.
38. Zolfaghari, F., Abdollahi, V., (2022), Determining the Most Suitable Vegetation Index for Mapping of Desertification Intensity in Arid Lands of Sistan Using Sentinel Images. Desert Management. 10(1): 1-14.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به سامانه نشریات علمی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb