XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

emadoddin F, ahmadabadi A, eftekhari S M, asadi gandomani M. Modelling and analysis land subsidence Vulnerability in Tehran South-West Plain. Journal of Spatial Analysis Environmental Hazards 2023; 10 (3) :85-100
URL: http://jsaeh.khu.ac.ir/article-1-3373-en.html
1- Ph.D Candidate of Geoormphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
2- Associate Professor of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran , ahmadabadi@khu.ac.ir
3- Assistant professor of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
4- MA Candidate of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
Abstract:   (2271 Views)
Introduction: Land subsidence is one of the environmental hazards that threatens most countries today, including the majority of Iran's plains (Ranjabr and Jafari, 2010). Damages caused by subsidence can be direct or indirect. Infrastructural effects are direct and indirect effects of subsidence, but economic, social and environmental effects are indirect effects of subsidence (Bucx, et al., 2015). The environmental effects of subsidence are related to other effects of subsidence, including the infrastructural, economic and social effects of subsidence. The southwest plain of Tehran is considered one of the most important plains of Iran due to its large areas of residential, agricultural and industrial lands from various aspects, especially economic, political and social. The subsidence of the Tehran plain was first noticed by the measurements of the country's mapping organization in the 1370s. Since 2004, the responsibility of investigating this phenomenon in the plains of Tehran was entrusted to the Organization of Geology and Mineral Explorations of the country. Although several researches have been done in the field of subsidence factors, amount and zoning. In the field of estimation of subsidence and changes in water level, spatial correlation of subsidence with changes in water level and estimation of vulnerability due to subsidence according to the density of population, settlements and facilities in the southwestern plain of Tehran has not been done.
Methodology: In the current research, we will analyze and estimate the spatial regression of the subsidence phenomenon by InSAR technique with water level changes from 2005 to 2017, as well as the environmental effects of subsidence in the southwest plain of Tehran by using Quadratic analysis method (O’Sullivan and Unwin, 2010). The criteria map of the current research is overlapped using the ANP method (Ahmedabadi and Ghasemi, 2015) weighting and finally with the SAW method (Emaduddin et al., 2014) in the Arc GIS 10.8 software, and the vulnerability map due to land subsidence in the study area is prepared.
Results: The average subsidence in 12 years is about 9.9 cm per year. Average subsidence has occurred in four main zones. Maximum and minimum subsidence have been observed in B (near the Sabashahr) and D (in east of plain) zones respectively. The results of the interpolation of the depth of the underground water in the study area indicate that the general trend of increasing the depth from the south (10 meter) to the north (more than 90 meter) of the plain. The results of spatial correlation showed that there is a significant direct relationship between the spatial layer of the average subsidence rate of Tehran Plain and the spatial data of the underground water level, and the R value is equal to 0.61. The distribution map of the underground water depth of the study area in the form of Quadrat analysis shows that in the main part of the plain, the depth of underground water is at an average level. The general trend of changes in the level of underground water is decreasing from northwest to southeast and is in 5 levels. The distribution of the networks shows that the rivers have three linear trends from north and northwest to south; their dispersion is mostly in the center of the study area. The flood rate is higher in the central plain networks. In study area, there are important arterial roads such as Tehran-Qom highway, Tehran-Saveh highway and Tehran Azadegan highway. The southern and northeastern areas of the study area are urban settlements such as Islamshahr, the 18th and 19th districts of Tehran Municipality and other residential areas such as Sabashahr. The major part of the region has fertile soil and the occurrence of subsidence can have negative effects on the fertility and texture of the soil in the study area. The results of vulnerability analysis due to subsidence show that there are 5 vulnerability classes in the study area including very low, low, medium, high and very high.
Conclusions: All in all most of the study areas (central, northern and western networks) are in medium, high and very high vulnerability. About 14,600 hectares of the study area are in medium vulnerability. Which is continuous from the west to the east of the study area. Most of the urban infrastructures are moderately vulnerable to subsidence. About 17,000 hectares of the southwestern plain of Tehran are very vulnerable. That more than half of the area of ​​this area is covered by settlements and urban infrastructures. Therefore, the phenomenon of subsidence causes irreparable damage to the settlements and infrastructures in the southwest plain.

 
Full-Text [PDF 1078 kb]   (572 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/04/10 | Accepted: 2023/12/2 | Published: 2023/09/23

References
1. احمدآبادی، علی؛ و کیمیا قاسمی. 1395. کاربرد روش های تصمیم گیری چندمعیاره در ارزیابی آسیب پذیری مساکن شهری در برابر زلزله با تاکید بر روش E-VIKOR مطالعه موردی منطقه 9 شهرداری تهران. فصلنامه علمی و پژوهشی مدیریت بحران، 9: 103-111.
2. افتخاری، مروت؛ و فاطمه عمادالدین. 1400. برآورد فرونشست دشت نظرآباد با استفاده از تکنیک تداخل سنجی راداری. هشتمین همایش ملی انجمن ایرانی ژئومورفولوژی. ژئومورفولوژی، کارکردها و ضرورتها. تهران.
3. حقیقت‌مهر، پریسا. 1389. مطالعه فرونشست سطح زمین ناشی از استخراج آب‌های زیرزمینی و چاه‌های نفتی به کمک تداخل‌سنجی راداری، پایان‌نامه کارشناسی ارشد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران.
4. خورسندی آقایی، احمد؛ و محمدرضا دیبایی. 1396. مدلسازی فرونشست زمین، مطالعه موردی: مدلسازی فرونشست زمین بخشی از دشت تهران. کنفرانس بین المللی عمران، معماری و شهرسازی ایران معاصر، تهران، https://civilica.com/doc/708938
5. رنجبر، محسن؛ و نسرین جعفری. 1388. بررسی عوامل مؤثّر در فرونشست زمین دشت اشتهار، فصلنامه ی جغرافیا، 6: 166-155.
6. رهنمون فر، مریم؛ محمدرضا سراجیان، احد توکلی و احد رحمتی. 1384. استفاده از تداخل سنجی راداری در مطالعه زلزله بم و زلزله ایزمیت در ترکیه. همایش ژئوماتیک. تهران.
7. سازمان زمین شناسی و اکتشافات معدنی کشور، فرونشست زمین در ایران، 1394.
8. سازمان زمین شناسی و نقشه برداری کشور، بررسی اجمالی علت وقوع فرونشست جنوب غرب تهران، 1383.
9. شریفی کیا، نعمت مال امیری و سیاوش شایان. 1392. سنجش میزان آسیب پذیری بافت های شهری در برابر مخاطره فرونشست زمین مطالعه موردی (بخشی از جنوب شهر تهران). جغرافیا و مخاطرات محیطی، 2: 91-106.
10. صادقی، جواد؛ و هادی حمیدیان. 1393. بررسی فرونشست زمین های آبرفتی ناشی از کاهش فشار در آبخوان ها و چگونگی اثرگذاری نوع آبرفت بر فرونشست زمین در دشت تهران، دومین کنفرانس ملی مهندسی ژئوتکنیک ایران کرمانشاه.
11. عطایی، هوشمند؛ و فائزه زمانی پور. 1395. بررسی فرونشست دشت تهران. دومین کنگره ملی توسعه و ترویج مهندسی کشاورزی و علوم خاک ایران، تهران، https://civilica.com/doc/520621
12. علیجانی، بهلول. 1394. تحلیل فضایی. تحلیل فضایی مخاطرات محیطی، 3: 1-14.
13. عمادالدین، فاطمه؛ علی احمدآبادی و مرجان شریفی پور. 1400. ارزیابی توان محیطی گردشگری در پهنه های جنگلی شمال کشور. هشتمین همایش ملی انجمن ایرانی ژئومورفولوژی. ژئومورفولوژی، کارکردها و ضرورتها. تهران.
14. کریمی، مرتضی؛ علی اصغر قنبری و شهرام امیری. 1392. سنجش خطرپذیری سکونتگاه های شهری از پدیده فرونشست زمین مطالعه موردی: منطقه 18 شهر تهران. برنامه ریزی فضایی، 3: 37-55.
15. مبتکرسرایی، محمد. 1391. بررسی و تعیین پارامترهای تاثیرگذار برفرونشست زمین، مطالعه مورد حوضه فرونشستی دشت تهران. پایان نامه کارشناسی ارشد رشته زمین شناسی مهندسی، دانشگاه تهران، پردیس علوم، دانشکده زمین شناسی.
16. مرادی، آیدین؛ سمیه عمادالدین، صالح آرخ و خلیل رضائی. 1399. تحلیل فرونشست زمین با استفاده از تکنیک تداخل سنجی راداری، اطلاعات چاه های ژئوتکنیکی و پیزومتری. تحلیل فضایی مخاطرات محیطی، 7: 153-176.
17. مقصودی، یاسر؛ رضا امانی و حسن احمدی. 1398. بررسی رفتار فرونشست زمین در منطقه غربی تهران با استفاده از تصاویر سنتینل-1 و تکنیک تداخل سنجی راداری مبتنی بر پراکنش گرهای دائمی. تحقیقات منابع آب ایران، 15: 299-313.
18. منافی آذر، علی؛ ماشااله خامه چیان و عطااله ندیری. 1397. مقایسه آسیب پذیری فرونشست آبخوان دشت جنوب غربی تهران با مدل وزن دهی ساده (مدل ALPRIFT) و الگوریتم ژنتیک. علوم زمین خوارزمی، 4: 199-212.
19. ABIDIN, Hasanuddin Z.; H. ANDREAS, I. GUMILAR, T. P. SIDIQ, and M. GAMAL. 2015. Environmental Impacts of Land Subsidence in Urban Areas of Indonesia. FIG Working Week, 17-21.
20. Barrett, D.J.; C.A. Couch, D.J. Metcalfe, L. Lytton, D.P. Adhikary, and R.K. Schmidt. 2013. Methodology for Bioregional Assessments of the Impacts of Coal Seam Gas and Coal Mining Development on Water Resources. A report prepared for the Independent Expert Scientific Committee (IESC) on Coal Seam Gas and Large Coal Mining Development through the Department of Sustainability, Environment, Water, Population and Communities (SEWPaC).
21. Bucx, T. H. M.; C. J. M. van Ruiten, G. Erkens, and G. de Lange. 2015. An integrated assessment framework for land subsidence in delta cities. Proc. IAHS, 372: 485-491.
22. d'Angremond, K.; and J.P. van de Water. 2012. Mining activities in a coastal zone. Effects and remedial measures in the Netherlands. Proc. of COPEDEC, 1085-1096.
23. Mahmoudpour, Masoud.; M. Khamechiyan, M.R. Nikudel, M.R. Ghassemi. 2013. Characterization of regional land subsidence induced by growndwater withdrawals in Tehran, Iran. Geopersia, 2: 49-62.
24. Hoffmann, J.; D.L. Galloway, and H.A. Zebker. 2003. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources research, 2: 1031, doi:10.1029/2001WR001252.
25. Minderhoud, P.S.J.; L. Coumou, L.E. Erban, H. Middelkoop, E. Stouthamer, and E.A. Addink. 2018. The relation between land use and subsidence in the Vietnamese Mekong delta. Science of the Total Environment, 634: 715-726.
26. MOE, Idham Riyando.; S. Kure, N.F. JANURIYADI, M. FARID, K. UDO, S. KAZAMA, and S. KOSHIMURA. 2016. Effect of land subsidence on flood inundation in Jakarta, Indonesia. Environmental Research, 72: 283-289.
27. USGS, Aquifer Compaction due to Groundwater Pumping by Land subsidence in California. 2018.
28. O’Sullivan, David.; and David Unwin. 2010. Geographic Information Analysis, 2nd Edition.
29. Pirouzi, Arash.; and A. Eslami. 2017. Ground subsidence in plains around Tehran: site survey, records compilation and analysis. Geo-Engineering, 30: 1-21.
30. Steve Blodgett, M.S.; and J.R. Kuipers, P.E. 2002. Technical Report on Underground Hard-Rock Mining: Subsidence and Hydrologic Environmental Impacts.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb