XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jahan tigh H, Dolatshahi Z, zarei cheghabalaki Z, toulabi nejad M. Factors affecting the depth of the boundary layer turbulence West of Iran in the summer and winter seasons (Case Study: Kermanshah Upper Air Station). Journal of Spatial Analysis Environmental Hazards 2021; 8 (2) :83-100
URL: http://jsaeh.khu.ac.ir/article-1-3197-en.html
1- assistant professor, Saravan Higher Education Complex, Saravan,Iran.
2- PhD in climatology Kharazmi University
3- PhD in climatology, Lorestan University
4- PhD in climatology Kharazmi University , Meysam.toulabi@gmail.com
Abstract:   (6212 Views)
Introduction
The daily cycle of radiant heating from sunrise and sunset leads to the daily cycle of tangible and hidden heat fluxes between the earth's surface and the atmosphere. These fluxes, which cannot directly reach the whole atmosphere, are confined to the shallow layer near the surface, called the boundary layer of the atmosphere. . The processes that take place in this layer are important in various aspects such as the dynamics of fluxes and atmospheric systems, surface radiation, the hydrological cycle, and air pollution research. The thickness of the boundary layer of the atmosphere varies with time and place, and its size varies from a few hundred meters to several kilometers on land under different conditions. This thickness depends on various factors such as the type of atmospheric systems and their structure, surface fluxes, steep vertical arrangement and wind direction and surface cover. The depth of the boundary layer can be calculated by different methods. This depth, which indicates the thickness of the turbulence zone near the surface, is usually called the depth of the mixed layer or the depth of the mixture. The methods used to determine the boundary layer of the atmosphere or the depth of the mixed layer are commonly used to investigate air pollution. Estimating the depth of the mixed layer is one of the most important parameters in the pollutant diffusion model. Therefore, the purpose of this study is to investigate the causes of monthly fluctuations in the height of the western border layer of the country with respect to the barley station above Kermanshah.
 
Materials and methods
Data on inversions of Kermanshah meteorological station during February and August 2012; Obtained from the Meteorological Organization of the country. Also, the data related to the vertical barley survey in this station, which were collected by radio sound, were used and the statistics of daily vertical barley survey above the Kermanshah synoptic station were obtained from the climatic database of the University of Wyoming. After obtaining information about vertical barley survey in Kermanshah station, Skew-T diagram, indicators and profile information of atmospheric conditions were drawn to recognize the dynamic and thermodynamic status of the atmosphere during the selected days in RAOB software environment. Then, in order to study the lower atmosphere more accurately, the changes in the vertical index of potential temperature, using daily radiosound data, the curves of potential temperature changes in terms of altitude were plotted. Then, using Huffer's computational method, days with critical inversion at potential temperature were found. Then, using geopotential height, wind and vertical ascent (omega) data, the synoptic causes of boundary layer depth fluctuations (mixed) and the effective factors were investigated.
 
Results and discussion
The main purpose of this study is to implement Hafter's proposed model to investigate the monthly fluctuations of the height of the boundary layer of Kermanshah station. The results of using Hafter method in estimating the depth of the mixed layer of the city and its daily changes for Kermanshah station in August and February 2012. In this regard, the effective factors in minimizing and maximizing the mixed layer in every two months (August and February), including: the synoptic situation in the study area on selected days, heat transfer, humidity, vertical arrangement and wind speed were investigated.
 
Conclusion
The results showed that in August, the depth of the layer during the month was between 3680 to 10292 meters. In this month, temperature subsidence, type of synoptic systems and vertical wind arrangement have directly played a significant role in the growth or weakening of the layer. Considering the comparison of the role of effective factors in maximizing and minimizing the depth of the boundary layer in August, it can be concluded that all factors have a positive role in maximizing the depth of the mixed layer; while the vertical wind arrangement plays an essential role in minimizing the layer depth in this month. In February, the depth of the mixed layer was about 2273 to 7017 meters and significant fluctuations in the values ​​of the depth of the mixed layer were observed during the month. In this month, temperature subsidence, vertical wind arrangement and synoptic systems have been effective in changing the depth of the mixed layer. Comparing the results obtained from both months, it can be said that the amount of surface flux is higher in summer than in winter; thus, the average depth of the mixed layer in August has almost doubled to February. In general, it can be concluded that the depth fluctuations of the mixed layer in winter due to the passage of different systems and the occurrence of atmospheric instabilities, have more changes than in summer.
 
Full-Text [PDF 979 kb]   (1160 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/01/8 | Accepted: 2021/06/19 | Published: 2021/09/21

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb