هدف این مطالعه ارزیابی و پیشبینی PM۱۰ شهر اهواز با روشهای آماری و شبکه عصبی مصنوعی بود. دادههای روزانهی هواشناسی و دادههای PM۱۰ (۱۳۹۰ تا ۱۴۰۲) از سازمان هواشناسی و اداره کل محیطزیست خوزستان دریافت شد. ابتدا دادهها پردازش و نرمال بودن آنها با روش کلموگروف اسمیرنوف بررسی شد. با توجه به غیرنرمال بودن دادهها، از روشهای اسپیرمن و تاوی بی کندال برای بررسی همبستگیشان با نرمافزار spss استفاده شد. سایر بخشها با زبان برنامهنویسی پایتون و در فضای اسپایدر انجام شد؛ سری زمانی و اطلاعات آماری دادهها به دست آمد. جهت پیشبینی میزان PM۱۰ برای گامهای زمانی آینده از روش شبکه عصبی (MLP) استفاده شد. بیانگر وجود ارتباط معنادار بین متغیرهای هواشناسی و PM۱۰ بود. به ترتیب، نتایج همبستگیهای اسپیرمن و تاوی بی کندال نشان داد بین PM۱۰ با سرعت باد (به میزان ۰,۰۹۴ و ۰.۰۶۱) و دما (۰.۲۸۴ و ۰.۱۸۷) دارای همبستگی مثبت و معنادار در سطح اطمینان ۹۹% میباشد. همچنین، این پارامتر با دیدافقی (۰.۴۰۸- و ۰.۳۰۰ -)، جهت باد (۰.۰۴۸ – و ۰,۰۳۴ -)، بارش (۰.۱۵۹ – و ۰,۱۲۵-) و رطوبت نسبی (۰.۲۵۹ – و ۰,۱۷۳-) دارای همبستگی معکوس و معناداری در سطح اطمینان ۰.۹۹% بوده است. برای پیشبینی میزان PM۱۰ آینده، از شبکه عصبی (MLP) استفاده شد. مدل از نوع Sequential با یک لایهی ورودی با ۶ نورون، سه لایهی مخفی از نوع Dense با ۱۶، ۳۲ و ۶۴ نورون و یک لایه خروجی بود. میانگین مربعات خطای MSE برای بخش آموزش برابر با ۰,۰۰۳۴ و برای دادههای اعتبارسنجی val_loss: ۰,۰۰۱۲ بود. برای بخش آزمایش، اعتبار سنجی برابر mse_mlp=۰,۰۰۴۸ و val_loss: ۰,۰۰۱۲ بود. نتایج میدهد که بین دادههای هواشناسی و PM۱۰ همبستگی معناداری از نوع مستقیم یا معکوسی وجود دارد. نتایج (MLP) نشان داد که شبکه توانسته عملکرد و خروجی مطلوبی را ارائه دهد و پیشبینی قابلقبولی برای دادههای PM۱۰ شهر اهواز داشته باشد.