تهیه و تحلیل منحنی های شدت، مدت، مساحت بارش در حوضه روستای هراز

زهراء حاجزاده
دانشیار گروه جغرافیا دانشگاه تربیت معلم تهران
همدان روزه
دانشجوی دوره دکترای گروه جغرافیا (اقلیم‌شناسی) دانشگاه تربیت معلم تهران

چکیده
موضوع مورد تحقیق، بررسی و محاسبه منحنی‌های حوضه روستای هراز می‌باشد. برای به دست آوردن منحنی‌های تهابی و بارندگی با استفاده از 20 ساله (78 - 1347) حوضه هراز مورد بررسی و تحلیل قرار گرفت. از نتایج به گونه‌ای که توانسته بودند انتخاب شوند، برای ترسیم منحنی‌های "هیرباران" توان‌های از منحنی «هم درصد» با تداوم‌های مختلف استفاده گردید. با انتباه منحنی‌های هیربران در حوضه، توان‌ها به دست آمده‌اند. د. آ. د. منحنی پوش با استفاده از 20 ساله متوسط و منحنی 98 ساعتی به هم نزدیک می‌باشند. داده‌ها و فاصله منحنی‌های به دست آمده گزارش‌های اسرارپزی درزمینه‌های مختلف هیدرولوژی، خواهد داشت. با مراجعه...
مقدمه:
قسمت‌های شمالی ایران از مناطق برنج‌زار کشور محسوب می‌شود، اما عدم مدیریت صحیح در امور آب و عدم مطالعات اساسی و پایه‌ای مربوط به بارش و منابع آب، باعث مشکلات زیادی در نواحی برنج‌زار کشور شده است.
برای طراحی سازه‌های هیدرولیکی نظیر سدهای ذخیره‌ای و انحرافی، کانال‌های آبیاری و هزکشی تالابی، اختراعات طراحی شده و غیره مجموعه‌ای از اطلاعات مربوط به بارش برای تخمین سیل‌زده و ضروری است. به طور معمول این اطلاعات به صورت ارتفاع بارش در یک سطح معین برازد. این مدل زمان به‌خصوص از آن‌ها استفاده می‌گردد، به صورت جدول‌های منحنی‌های طراحی قبلاً به‌صورت مدرن و مطابق با شرایط مرجع (D, A, D) معروف هستند که به کمک آن‌ها می‌توان حداقل بارش در سطح مورد نظر را برای تداوم‌های بخصوص از رگبار به دست آورد. ترسیم منحنی‌های جزء مطالعات اصلی علم جغرافیا در دست آورده است.
موقعیت جغرافیایی حوضه هزار:
حوضه این حوضه دروازه‌ی بین تا ۳۵ تا ۵۳ درجهٔ جغرافیایی و ۲۷ تا ۲۲ درجهٔ عرض شمالی و ۵۱ تا ۴۶ درجهٔ طول شرقی از نصف‌النهار گرینویچ واقع شده است (نقشه شماره ۱). این حوضه منطقه‌ای در شمال به دریاچهٔ خزر، از غرب به حوضه رودانه‌ی چالوس، از طرف جنوب منطقه به قلل و خط‌کلان‌ها اصلی البرز و از طرف شرق و
نتیجه و تحلیل منحنی‌های شدت مدت مساحت بارش در حوضه رودخانه هزارشت به

شمال شرق به گرمود و رود بابل محدود می‌شود. از نظر تقسیمات اداری،
سرزمین‌های این حوضه جزء استان مازندران است و به‌خیال اعظم آن را شهرستان
امل دربر گرفته و تنها شهاب اصلی آن که بیشتر در محدوده شهروستان نور
می‌باشد همان رودهور است که از گردنه لامش از حوضه رودخانه چالوس گذشت و
با جهت غربی به رودخانه هزار می‌پیوندد (جوکار سرهنگی، 1372)。

روش کار:
برای ترسیم منحنی D.A.D تهیه یک نقشه پایه از حوضه لامش بود. به این
منشور نقشه توبوگرافی 25000 بهره شده توسط سازمان جغرافیایی ارتش و
نیروی های مسلح مورد استفاده قرار گرفت. مرحله بعدی جمع آوری و استخراج آمار
اطلاعات و منابع آماری بود که آمار میانگین بارش ماهانه و سالانه دوره آماری
78 - 1347 است که این آمارها موجود در حوضه و همچنین تعدادی از ایستگاه‌های
اطراف حوضه تهیه شد. برای تجزیه و تحلیل بهتر آمارهای منطقه، انتخاب پایه
زمایی بسته به برآورد نمودار میله‌ای صورت پذیرفت و سال آیی 48 - 1347 به
عنوان پایه زمایی بسته ایستگاه‌ها انتخاب شد.

از ناحیه که برخی از ایستگاه‌ها به علت ناقص بودن آمار نیاز به پارسازی
داشتند، قبل از این کار همگی کلیه ایستگاه‌ها با استفاده از آزمون توالی
برازش داده شد و نتایج بدست آمده در سطح اعتماد 95 درصد
موردهای قرار گرفت و بعد نوند آماری با روش همبستگی بین ایستگاه‌ها
پارسازی شد. در مرحله بعدی با استفاده از ایستگاه‌های پارسازی
حضو، سه
مورد از شدیدترین و فراگیرترین تفوان‌ها در دوره آماری ذکر شده در منطقه
موردمطالعه انتخاب شدند (جدول 1 و 2). نشانه‌های باران با تداوم‌های
12
نورزه ترسمی گردد، براساس این نقشه، جداول ارتقاع - مساحت بارندگی ها
اساس و یا به رسم منحنی‌های اولیه D.A.D هستند، به هیچ‌وجه.بعد از آن
منحنی‌های ریگ‌رها متغیر با یا به زمانی مشترک در هم ادغام شند و در
نهایت منحنی نهایی D.A.D به هیچ‌وجه

استفاده از نقشه‌های سینوپتیکی در سه تراز سطح زمین، ۸۵۰ و ۴۰۰ هکتوباسکال هم‌مان با توافن‌های مذكور و ریگ‌رها مربوط به
هیدرولوگی حوضه به صورت سیستماتیک مورد مطالعه قرار گرفت.

1- تفسیر نقشه‌های هم‌باران توافن‌های مذكور:
همیکننده از نقشه شماره (۲) مربوط به توافن روز ۱۳۵۸/۲/۶ پیداست.
مرکز بیشتر بارش در قسمت خروجی حوضه؛ یعنی اطراف ایستگاه کرسنگ واقع
شد است. از این منطقه به بعد از میزان بارش کاسته شده تا چابی که در اطراف
ایستگاه پنجاب به حداقل خود یعنی منحنی ۱۰ میلی‌متری می‌رسد. حداکثرهم در
گنر ساحل اطراف ایستگاه محمودآباد مشاهده می‌شود.
نقشه هم‌باران توافن ۱۷/۷/۱۳۶۱ (نقشه شماره ۳) نمایند توافن ۱۲ تا
۱۳۶۱/۷/۱۷ است. به طورکلی در این توافن با تداوم ۵ روزه، حداقل بارش در
قسمت جنوبی حوضه در اطراف ایستگاه پلور با منحنی ۷۰ میلی‌متر مشاهده
می‌شود. کمترین مقدار بارش در قسمت چپ نکته خروجی حوضه در اطراف
ایستگاه روزن با منحنی ۱۰ میلی‌متر مشخص شده است.

با مرجع به نقشه هم‌باران توافن ۱۶/۷/۱۳۶۶ (نقشه شماره ۴)
مشخص است که بیشترین بارش در قسمت جنگل‌های در حوالی ایستگاه
محمودآباد باریده است و کمترین میزان بارش در حوالی ایستگاه پنجاب با
منحنی ۱٠ میلیمتر مشخص است که از این منطقه به اطراف، میزان بارندگی افزایش پیدا می‌کند.

۲- تفسیر جداول مساحت - ارتقاع توفان‌های منتخب:

براساس نقشه‌های هیپرژان. جداول مساحت - ارتقاع تعیین می‌شود. این جداول اساس ایجاد منحنی‌های D.A.D اولیه است. با توجه به جدول ارتقاع - مساحت توفان ۴ تا ۷/۱۳۵۸ در تداوم یک روزه بیشترین میزان میانگین بارندگی بین دو خط هیپرژان ۱۰۰ میلیمتر (جدول شماره ۴ و نمودار شماره ۱). در تداوم دو روزه ۱۲۰ میلیمتر و در تداوم سه روزه ۱۸۰ میلیمتر و در تداوم چهار روزه ۲۲۰ میلیمتر می‌باشد که به ترتیب مساحتی معادل ۱۲۸، ۹۶/۸۸، ۷۵/۲۱ و ۳۷/۱۲ کیلومتری از حوضه را دربرگرفته است. همچنین در جداول ارتقاع - مساحت توفان ۱۲ تا ۷/۱۷۳۶ میزان میانگین باران بین دو خط هیپرژان در تداوم یک روزه ۸۰ میلیمتر، (جدول شماره ۵ و نمودار شماره ۲) و دو روزه ۱۲۰ میلیمتر، در تداوم سه روزه ۱۴۰ میلیمتر و در تداوم چهار روزه ۱۶۰ میلیمتر می‌باشد که درمساحتی به ترتیب ۷۵/۲۱، ۱۴۶/۰۲ و ۱۴۱/۱۶ کیلومتری از حوضه باریده است. با مراجعه به جدول ارتقاع - مساحت توفان ۱۵ تا ۷/۱۱۴۶۶ حداکثر بارش میانگین دو خط هیپرژان در تداوم یک روزه ۱۰۰ میلیمتر، (جدول شماره ۶ و نمودار شماره ۳) در تداوم دو روزه ۱۲۰ میلیمتر، در تداوم سه روزه ۱۴۰ میلیمتر می‌باشد که مساحتی به ترتیب ۸۸/۷۵، ۸۲/۷۳، ۱۰۲/۵ کیلومتری مربع را پوشانده است.
3- تفسیر منحنی نهایی یا پوش حوضه:
چون هدف تعیین حداکثر بارندگی مشاهده‌شده برای هر سطح از حوضه است، منحنی D.A.D هم پایه زمانی در هم ادغام و منحنی پوش حوضه ترسیم می‌شود. براساس منحنی پوش حوضه نتیجه این گونه است: (نمودار شماره 4):
1- به طورکلی نموداری با شدت بیشتر، مساحت کمتر و برعکس بارندگی با شدت کمتر، مساحت بیشتری را اشغال کرده است.
2- از فاصله منحنی‌ها مشخص است که هرچه مدت بارش کوتاهتر باشد، شدت آن زیادترخواهدبود و برعکس، باران‌های طولانی مدت از شدت کمتری برخوردار هستند.
3- مقادیر بارندگی یک روزه که فاصله بسیارخوبی تا محوئ 7 دارد، نشان دهنده آن است که بخش اعظم بارش در مدت زمان 24 ساعت با تداوم یک روزه باریده است.
4- فاصله منحنی ۴۸ ساعت از نظر عمق بارش در حدمتوسط قرارگرفته و نشان‌دهنده بارش تقرباً مناسب در تداوم دو روزه است. فاصله بین منحنی ۲۴ ساعت نسبت به 4۸ ساعت و منحنی ۸ ساعت نسبت به ۲۴ ساعت تقریباً از هم می‌باشد.
5- اختلاف بارندگی‌های یک روزه و دو روزه از مساحت ۱۰۰۰ کیلومتر به بالاتر، تقیب‌اً ناپیده و حدود ۲۰ میلیمتر است ولی در مساحت پایین کمتر شده به ۱۷ میلیمتر می‌رسد.
6- اختلاف بین بارندگی ۲ روزه و سه روزه از مساحت ۱۰۰۰ کیلومتر به بالا تقیب‌اً ناپیده در حدود ۱۲ میلیمتر است و در
مساحت پایین‌تر فاصله‌ها بیشتر شده که در نهایت فصله‌ی 1 میلیمتر است.

- اختلاف بین باربرد 3 و 4 روزه در مساحت 1000 کیلومتر در حدود 12/5 میلیمتر است. در مساحت 1000 کیلومتر به حداکثر فاصله خود رسیده و در مساحت 3000 کیلومتر به بالاتر، منحنی‌ها به هم نزدیک و فاصله‌ی 1 میلیمتر می‌باشد.

این نکات از این جهت حائز اهمیت است که حجم روانال ناشی از باربرد 3 و سایر موارد هیدرولوژیکی، به برمبای باربرد 3 می‌باشد و طور صحیح محاسبه کرد.

4- تحلیل سینوپتیک توفان‌های منتخب:

با بررسی سیستمی نقشه‌های هوای الگوهای فشل در روزهای وقوع توفان و دو روز قبل از آن مشاهده شد که قسمتی از رطوبت نواحی ساحلی دریای خزر با توجه به جریان‌های سطح زمین و هدرگنازی سطح زمین و 850 هکتوباسکال به سوی نواحی شمالی حوضه آبی‌هایات بیابان‌های زیادی است. این منطقه باعث دریایی‌های خزر به سوی این نواحی آورده شده است. همچنین مشاهده شد که در نواحی با حفرات و هدرگنازی سطح زمین و 850 هکتوباسکال شمال شرقی و شمالی باشند، رطوبت انتقال‌یافته از دریای خزر به سوی این نواحی شمالی شمالی می‌شود. وجود هوای گرم و تعطیش‌شده از جنوب و مرکز ایران به سوی نواحی شمالی و بیابان‌های بیابان‌های نواحی در منطقه است. هرقدر شیب گرمایی در نتیجه شبک فشار یا ارتقاء در این نواحی بیشتر باشد شدت ریزش باران هم بیشتر خواهد بود.
با مراجعه به الگوی فشار نقشه سطح زمین تاریخ ۱۳۶۶/۷/۱۶ (نقشه شماره ۵) مرکز فشار زیاد ۱۰۴۵ هکتوپاسکال، نواحی شمالی دریای خزر و نواحی مرکزی ایران را تحت تأثیر قرار داده است. جریان‌ها طوری است که از شمال به سوی نواحی جنوبی و شرقی دریای خزر هوا ی سرد ریزش می‌نماید. این ریزش هوا ی سرد تا نواحی جنوب‌شرقی دریای خزر و شیب‌های شمالی سلسله جبال البرز عامل مهمی در تشکیل بارندگی است.

همچنین با مشاهده الگوهای فشار سطح ۸۵۰ هکتوپاسکال تاریخ مذکور (نقشه شماره ۶) یک مرکز پررتفع با بر بند ۱۶۴ زنبوستانیل در قسمت شمالی دریای خزر مشاهده می‌گردد که باعث انتقال هوا ی سرد قسمت شمالی به سوی سواحل و شمال خراسان می‌شود.

در همین تاریخ در سطح ۵۹۹ هکتوپاسکال (نقشه شماره ۷) منحنی بسته ۶۸ زنبوستانیل دریافت، بخش شمالی و غربی دریای خزر و شمال آذربایجان را آشغال کرده است. وجود همین سلول بسته‌شده جرختنی در لایه میانی جو و بیزگی آن، عامل مهمی جهت ریزش باران در منطقه مورد نظر است.
تهیه و تحلیل منحنی‌های شدت ـ مدت ـ مساحت بارش در حوزه‌های بارش‌های هزارشیریه
نوری‌العمل علوم جغرافیایی، جلد ۲، شماره ۲، زمستان ۱۳۸۲
جدول شماره ۱: آمار بارندگی رگبار ۴ - ۲/۷۳۸/۱۲\حوضه‌ه‌رژ\n
<table>
<thead>
<tr>
<th>نام‌استگاه</th>
<th>۱۳۵۸/۱/۷</th>
<th>۱۳۵۸/۲/۷</th>
<th>۱۳۵۸/۲/۵</th>
<th>۱۳۵۸/۴/۷</th>
<th>۱۳۵۸/۹/۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>بارندگی</td>
<td>۱۲</td>
<td>۸</td>
<td>۵</td>
<td>۴</td>
<td>۲</td>
</tr>
<tr>
<td>پلور</td>
<td>۱۰</td>
<td>۱۸</td>
<td>۱۴</td>
<td>۱۰</td>
<td>۷</td>
</tr>
<tr>
<td>کریستیک</td>
<td>۲۷</td>
<td>۱۸/۶</td>
<td>۱۰۰</td>
<td>۴۳/۶</td>
<td>۷۴/۸</td>
</tr>
<tr>
<td>نمای‌سنگی</td>
<td>۸۴</td>
<td>۴۶/۰۳</td>
<td>۸۴/۸۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
<tr>
<td>پنجم</td>
<td>۸۶/۸</td>
<td>۸۴/۸۳</td>
<td>۸۴/۸۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
<tr>
<td>بلدنه</td>
<td>۷۴/۸</td>
<td>۷۴/۸۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
<tr>
<td>رزن</td>
<td>۸۴/۸</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
<tr>
<td>سرخورد</td>
<td>۷۴/۸۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
<tr>
<td>محمودآباد</td>
<td>۸۴/۸۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td>۹۸/۷۳</td>
<td></td>
</tr>
</tbody>
</table>
جدول شماره ۲: آمار بارندگی زیگبار ۱۳۵۱/۷/۱۷ - ۱۳۶۱/۷/۱۷ حوضه هرژ

<table>
<thead>
<tr>
<th>نام استگاه</th>
<th>۱۳۶۱/۷/۱۷</th>
<th>۱۳۶۱/۷/۱۵</th>
<th>۱۳۶۱/۷/۱۴</th>
<th>۱۳۶۱/۷/۱۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوار</td>
<td>۸۱</td>
<td>۳۶</td>
<td>۳۶</td>
<td>۱۹</td>
</tr>
<tr>
<td>کرسک</td>
<td>۳۱۳</td>
<td>۱۴۷</td>
<td>۲۴/۷</td>
<td>۱۱۷</td>
</tr>
<tr>
<td>نمارساق</td>
<td>۲۳</td>
<td>۱۶</td>
<td>۱۰</td>
<td>۱۹</td>
</tr>
<tr>
<td>پنجاب</td>
<td>۴۹/۵</td>
<td>۴۹/۸</td>
<td>۸۶/۶</td>
<td>۱۰۸</td>
</tr>
<tr>
<td>بلده</td>
<td>۵۱</td>
<td>۱۳</td>
<td>۷</td>
<td>۱</td>
</tr>
<tr>
<td>رژن</td>
<td>۵</td>
<td>۳</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>سرخرود</td>
<td>۴۲/۸</td>
<td>۱/۸</td>
<td>۳</td>
<td>۲/۳</td>
</tr>
<tr>
<td>محمودآباد</td>
<td>۱۲</td>
<td>۶</td>
<td>۳۰</td>
<td>۱۳</td>
</tr>
</tbody>
</table>

جدول شماره ۳: آمار بارندگی زیگبار ۱۳۵۶/۷/۱۷ - ۱۳۶۶/۷/۱۷ حوضه هرژ

<table>
<thead>
<tr>
<th>نام استگاه</th>
<th>۱۳۵۶/۷/۴</th>
<th>۱۳۵۶/۷/۱۵</th>
<th>۱۳۶۶/۷/۱۴</th>
<th>۱۳۶۶/۷/۱۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوار</td>
<td>۴۸/۴</td>
<td>۱۵۴</td>
<td>۱۳۸/۹</td>
<td>۱۳۷/۲</td>
</tr>
<tr>
<td>کرسک</td>
<td>۳۰</td>
<td>۱۸</td>
<td>۴۴</td>
<td>۹</td>
</tr>
<tr>
<td>نمارساق</td>
<td>۹</td>
<td>۶۵</td>
<td>۲۱/۴</td>
<td>۶۵</td>
</tr>
<tr>
<td>پنجاب</td>
<td>۸/۵</td>
<td>۳</td>
<td>۲/۳</td>
<td>۲/۰</td>
</tr>
<tr>
<td>بلده</td>
<td>۸</td>
<td>۲۱</td>
<td>۷</td>
<td>۲۱</td>
</tr>
<tr>
<td>رژن</td>
<td>۳۲</td>
<td>۲۱</td>
<td>۲۱</td>
<td>۱۴</td>
</tr>
<tr>
<td>سرخرود</td>
<td>۵۷</td>
<td>۱۴</td>
<td>۱۰۰</td>
<td>۱۴</td>
</tr>
<tr>
<td>محمودآباد</td>
<td>۲۰</td>
<td>۱۰۰</td>
<td>۱۴</td>
<td>۱۴</td>
</tr>
</tbody>
</table>
جدول شماره ۴: محاسبه متوسط بارندگی نقشه همبازان

<table>
<thead>
<tr>
<th>ردیف</th>
<th>مقدار بارندگی</th>
<th>مساحت بارندگی</th>
<th>حجم بارندگی</th>
<th>میانگین بارندگی بین همبازان</th>
<th>سطح دوخت همبازان</th>
<th>سطح دوخت همبازان به km²</th>
<th>سطح دوخت همبازان به mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱۰۰</td>
<td>۱۲۸</td>
<td>۱۲۸۱۲</td>
<td>۱۲۸/۱</td>
<td>۹۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>۲</td>
<td>۸۷/۴</td>
<td>۲۲۴/۱</td>
<td>۱۷۲۸۶</td>
<td>۲۵۴</td>
<td>۸۰</td>
<td>۸۰</td>
<td>۸۰</td>
</tr>
<tr>
<td>۳</td>
<td>۸۳/۲</td>
<td>۲۲۱</td>
<td>۲۲۶۱۲</td>
<td>۲۷۶/۹</td>
<td>۷۰</td>
<td>۷۰</td>
<td>۷۰</td>
</tr>
<tr>
<td>۴</td>
<td>۵۳/۶</td>
<td>۴۱۷۴</td>
<td>۹۳۸۸۸/۲</td>
<td>۱۰۲/۳</td>
<td>۵۰</td>
<td>۵۰</td>
<td>۵۰</td>
</tr>
<tr>
<td>۵</td>
<td>۳۱/۸</td>
<td>۳۹۸۰</td>
<td>۱۵۸۳۸۶۵</td>
<td>۳۳۱/۴</td>
<td>۲۰</td>
<td>۲۰</td>
<td>۲۰</td>
</tr>
</tbody>
</table>
جدول شماره ۵: محاسبه متوسط بارندگی نقشه همبیاران ۱۳۶۱/۷/۱۷

رنگنگی بین همبیاران به mm	سطح دو خط همبیاران به km²	میانگین باران حاضر در همبیاران به mm	حجم بارندگی حاضر بر همبیاران به ۵ سالون	حجم بارندگی حاضر بر همبیاران به ۱۰ سالون	مساحت حجم بارندگی حاضر بر همبیاران به ۵ سالون	میزان بارندگی حاضر بر همبیاران به ۵ سالون	مقدار متوسط بارندگی سطح تجمعی بارندگی سطح تجمعی بارندگی	
۱	۱۷۰۰ ۰۰۰ ۰۰۰ ۰۰۰	۱۹۶۰ ۰۰۰ ۰۰۰ ۰۰۰	۱۹۹۰ ۰۰۰ ۰۰۰ ۰۰۰	۸۰ ۰۰۰ ۰۰۰ ۰۰۰	۲۴۹ ۰۰۰ ۰۰۰ ۰۰۰	۵۰ ۰۰۰ ۰۰۰ ۰۰۰	۱ ۰۰۰ ۰۰۰ ۰۰۰	۱۰ ۰۰۰ ۰۰۰ ۰۰۰
۱	۹۸۰ ۰۰۰ ۰۰۰ ۰۰۰	۱۱۵۶ ۰۰۰ ۰۰۰ ۰۰۰	۱۲۶۰ ۰۰۰ ۰۰۰ ۰۰۰	۴۰ ۰۰۰ ۰۰۰ ۰۰۰	۲۳۵ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰	۲ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰
۲	۴۴۶ ۰۰۰ ۰۰۰ ۰۰۰	۱۸۵۹ ۰۰۰ ۰۰۰ ۰۰۰	۱۹۱۱ ۰۰۰ ۰۰۰ ۰۰۰	۴۰ ۰۰۰ ۰۰۰ ۰۰۰	۲۴۵ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰	۲ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰
۳	۴۲۷ ۰۰۰ ۰۰۰ ۰۰۰	۷۳۲ ۰۰۰ ۰۰۰ ۰۰۰	۷۳۹ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰	۲۴۷ ۰۰۰ ۰۰۰ ۰۰۰	۲۰ ۰۰۰ ۰۰۰ ۰۰۰	۲ ۰۰۰ ۰۰۰ ۰۰۰	۰ ۰۰۰ ۰۰۰ ۰۰۰
۴	۴۲۱ ۰۰۰ ۰۰۰ ۰۰۰	۲۱۵۱ ۰۰۰ ۰۰۰ ۰۰۰	۲۲۷۵ ۰۰۰ ۰۰۰ ۰۰۰	۸۰ ۰۰۰ ۰۰۰ ۰۰۰	۳۲۸ ۰۰۰ ۰۰۰ ۰۰۰	۵۰ ۰۰۰ ۰۰۰ ۰۰۰	۳ ۰۰۰ ۰۰۰ ۰۰۰	۰ ۰۰۰ ۰۰۰ ۰۰۰
۵	۴۳۷ ۰۰۰ ۰۰۰ ۰۰۰	۲۱۵۳ ۰۰۰ ۰۰۰ ۰۰۰	۲۳۳ ۰۰۰ ۰۰۰ ۰۰۰	۵ ۰۰۰ ۰۰۰ ۰۰۰	۳۳۳ ۰۰۰ ۰۰۰ ۰۰۰	۵ ۰۰۰ ۰۰۰ ۰۰۰	۰ ۰۰۰ ۰۰۰ ۰۰۰	۰ ۰۰۰ ۰۰۰ ۰۰۰

![نمودار بارندگی ۲۴ ساعته](https://via.placeholder.com/150)
جدول شماره ۶: محاسبه متوسط بارندگی نقشه هیبران ۱۳۶۶/۷/۱۶

<table>
<thead>
<tr>
<th>رده</th>
<th>بارندگی بین هیبران به کیلومتر مربع</th>
<th>سطح دو شیب هیبران به میلی‌متر</th>
<th>میانگین باران حاشیه‌بندی دو هیبران به میلی‌متر</th>
<th>حجم بارندگی حاشیه‌بندی دو هیبران به میلی‌متر</th>
<th>مساحت</th>
<th>نقطهٔ متوسط بارندگی سطح نمایه</th>
<th>نقطهٔ متوسط بارندگی سطح نمایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>١٠/٠</td>
<td>١٠/٠</td>
<td>١٠/٠</td>
<td>١٠/٠</td>
<td>١٠/٠</td>
<td>١٠/٠</td>
<td></td>
</tr>
<tr>
<td>٢</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td></td>
</tr>
<tr>
<td>٣</td>
<td>٦٠/٠</td>
<td>٦٠/٠</td>
<td>٦٠/٠</td>
<td>٦٠/٠</td>
<td>٦٠/٠</td>
<td>٦٠/٠</td>
<td></td>
</tr>
<tr>
<td>٤</td>
<td>٩٠/٠</td>
<td>٩٠/٠</td>
<td>٩٠/٠</td>
<td>٩٠/٠</td>
<td>٩٠/٠</td>
<td>٩٠/٠</td>
<td></td>
</tr>
<tr>
<td>٥</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td>٣٠/٠</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image_url)
تعداد شماره رؤیایی: الگوی شماره صفحه سیزدهم و دومین ماه ۱۳۹۷

به نمایندگی از هماینده و اندکی در فرآیند شاره ۵۷۰۰ مکرونیکال ۱۳۹۰

به نمایندگی از هماینده و اندکی در فرآیند شاره ۵۷۰۰ مکرونیکال ۱۳۹۰
پی نوشت:

1- depth – area – duration

یا شدت بارش: عبارت است از مقدار بارندگی در واحد زمان.

2- Depth

یا سطح بارش: به مساحتی که شدت به یک هر نما در هنگام اندازه‌گیری باران در یک نقطه می‌تواند به اطراف آن نقطه تعمیم داد.

3- Area

یا مساحت بارندگی: فاصله زمانی بین شروع و خاتمه بارندگی رامده بارش گوید.

4- Duration

منابع

1- آرتبیار، رضا؛ برآورد حداکثر بارش محتمل حوضه ابریز آبی چای، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت معلم تهران، ۱۳۸۸.

2- افشار، عباس؛ هیدرولوژی مهندسی، مرکز نشر دانشگاهی، ۱۳۶۳.

3- حاجیزاده، زهرا؛ جزوه درسی اقلیمی ایران، دوره کارشناسی ارشد، دانشگاه تربیت معلم تهران، ۱۳۷۸.

4- خليلی، علي؛ تحلیل منحنی های دامنه خروجی رودخانه طالقان، وزارت نیرو، ۱۳۶۹.

5- جوکار سرهنجی، عباسی؛ زنده‌موردوزی حوضه رودخانه هزاز، پایان‌نامه کارشناسی ارشد، دانشگاه شهید بهشتی، ۱۳۷۲.

6- عفیقی، محمد؛ تحلیل منحنی‌های عمق سطح دامنه حوضه گرچ- جاجرم، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، ۱۳۷۵.

7- علیزاده، امین؛ اصول هیدرولوژی کاربردی، انتشارات دانشگاه تهران، ۱۳۷۴.

8- منصف، بهزاد؛ تهیه منحنی های ارتفاع سطح زمین تداوم حوضه آبخیز مارون، پایان‌نامه کارشناسی ارشد، دانشگاه منابع طبیعی تربیت، ۱۳۷۶.

9- مهدوی، محمد؛ هیدرولوژی کاربردی، جلد اول، انتشارات دانشگاه تهران، ۱۳۷۴.

10- نجمی، محمد؛ هیدرولوژی مهندسی، انتشارات دانشگاه علم و صنعت، ۱۳۸۸.