نشریه تحقیقات کاربردی علوم جغرافیایی، سال پانزدهم، شماره ۳۷، تابستان ۹۴

تحلیل روند و چرخه های سری زمانی بارش سالانه حوضه های آبریز حل و مند

دریافت مقاله: ۱۳۹۷/۱۰/۳۷
پذیرش نهایی: ۱۳۹۷/۵/۷

صفحات: ۲۴۵-۲۷۲

محمد سلیفه: دانشیار اقیم شناسی، گروه آب و هواشناسی، دانشکده علوم جغرافیایی، دانشگاه خوارزمی، تهران، ایران
Email: saligheh@khu.ac.ir

حسین عسکری: دانشیار اقیم شناسی، دانشکده علوم انسانی، دانشگاه زنجان، ایران
Email: asakereh@znu.ac.ir

نasserzadeh2100@yahoo.com
Email: nasserzadeh2100@yahoo.com

چکیده

پارش از سرکش ترین عنصر اقیمی به شمار می‌رود. بنابراین شناخت رفتار نوسانی آن
از ضروریات برنامه‌ریزی محیطی (آگاهی از رفتار آشکار و به‌نهاد)، این معتبر کلیدی می
باشد. الگوی روند و تکنیک تحلیل طیفی یکی از روش‌های مناسب جهت درک رفتار
آشکار و به‌نهاد، برای استخراج و تحلیل نوسان های اقیمی به طور موج‌های مختلف
است. در این راستا تکنیک تحلیل طیف انداره ای از توزیع واریانس را در امتداد تمامی
طول موج‌های ممکن سری زمانی به دست می‌دهد. در این پژوهش از آمار ۳/۷ ایستگاه
حوضه های آبریز مند و حل(اعم از باران سنگی و سیبوده‌کن) از فاصله تا سال
۱۳۹۷ میلادی که حداقل ۴۰ سال آمار داشتند، جهت بررسی و تحلیل چرخه های بارش
سالانه به‌کار آمده شد است. برای این اساس، ابتدا الگویی در خانواده جین‌چم برای
پراش‌شناسایی روند بارش سالانه ارائه بود و پس از اینکه مورد
از بارش‌های وارده در ادامه نیز با استفاده از تکنیک تحلیل طیفی دوره نگاه‌هایی بارش
سالانه با فاصله اطمینان ۹۵ درصد برای هر یک از ایستگاه‌های منطقه مطالعه
پرآور و چرخه‌های معنی‌دار در طول سری های زمانی بارش حوضه استفاده گردید. بر
پایه یافته‌های این پژوهش مشخص شد که در تمامی ایستگاه‌های حوضه، بارش سالانه
دارای روند کاهشی می‌باشد، و در این ميان ۱۱ ایستگاه با توجه به معنی‌داری از

۱ نوبت‌الدین مسئول: نظرین خیابان شهید منجید دانشکده علوم جغرافیایی گروه آب و هواشناسی
الگوی روند خلو و سهمی تثبیت می‌نمایند، و حاکی از یک رفتار کاهشی در بارش سالانه است. این نتایج در ادامه به منگولی بافت گرده و فقیدی نیز در تمامی منطقه مورد مطالعه دارای پیش‌ترین رخداد بارش‌گذار بارش سالانه می‌باشد.

کلیدواژگان: الگو، سای، روند، تحلیل طیفی، بارش سالانه، شمال خلیج فارس، حوضه های آبی، حل و میخت.

مقدمه
و افزایش تغییرات اقلیمی، به دلیل اهمیت و تأثیر آن بر شرایط محیطی، اقتصادی و اجتماعی، و همچنین نقش اقلیمی در برنامه‌ریزی های خرد و کلان، در حالی که زمانی طولانی‌تر (روندهای دامنه کوه‌های ایران)، و کوتاه مدت (فازهای و چرخه‌ها) از موضوعات جالبی برای مطالعه تحقیقاتی طبیعی، ناحیه‌ای و محلی، از جمله انتخابی است. در نهایت این موضوع اجباری برای سالانه قابل مطالعه را به خود اختصاص داده است. در مجموع باید گفت پدیده تغییرات اقلیمی در آینده نه جنده دور، بلکه از جهت‌های زندگی بشر تأثیر خواهد گذاشت. تغییرات طبیعی سالانه قابل قبول باشند و فصل‌بندی (زرمی و دیگران)، از یک طرف به دلیل اهمیت آن در فعالیت‌های انسانی نظیر کشاورزی و مدیریت منابع آب، و طرف دیگر به دلیل تأثیر محیطی، در سال‌ها و اهی کردن مورد توجه داشتن‌اند بسیاری از جهان و ایران قرار گرفته است (زمی، 1390). در این راستا می‌توان مطالعات انگیز شده را به دو دسته کلی تقسیم نمود: یک دسته مطالعاتی که تغییرات کلی بارش و تغییرات میانگین بارش را در نظر قرار داده و بر خودی گری دیگر به تغییرات سالانه در سالانه برداخته اند. برای مثال و به منظور رعایت ایجاد بyclic مطالعات گروه اول را می‌توان به شرح زیر بیان نمود:

1. Henderson
2. Chung and Yun
تحليل روند و چرخه‌های سری زمانی بازه‌سالانه جوش‌های آبی رز حله و مند

روند آفتابی به میزان ۱۸۲ میلی‌متر در باش سالانه، مشاهده شد. همچنین بیشتر
مطالعات صورت گرفتند در جهان یک‌پژوه ایران مربوط به تغییرات روند باشی‌باید اخیراً
mطالعات مربوط به نوسانات باش نیز رو به گسترش است. مطالعات که از گروه‌های نوسانی باش
را بر اساس روش‌های مختلف تابع خود همبستگی، تحلیل همسازت، تحلیل همسازت، تحلیل طبیعی و ... مورد
بررسی قرار داده‌اند. گروهی دوم مطالعات مربوط به نوسانات باش نیز در بر می‌گیرند. این مطالعات به لحاظ تعداد نیز در
ربه‌دوم قرار داشته و عمده‌ای در کشور می‌باشد. این نوع نوسان‌ها توجهی نشده است. یکی از مهم
ترین روش‌های برآورد گروه‌های نوسانی، تکنیک تحلیل طبیعی است. تحلیل طبیعی به روش
های برآورد تابع چگالی طبیعی یا طبیعی یک سری زمانی گفته می‌شود. این روش بسیار را با
برآورد گروه طبیعی تمام دامنه بسیاری سروکار دارد (عسکری، بزرگی، ۱۳۹۱). تحلیل
طبیعی (ر. ۳) که از آن با نام تحلیل طبیعی یاد می‌شود، از ارزیابی برای جستجو و ارزیابی
خواص فرکانس‌های پیوسته و گسترش ایستا و ناپایداری سری‌های زمانی اقلیمی است
استنباط بر مبنای تحلیل طبیعی و تابع چگالی احتمال را تحلیل در
فلدو فرکانس (زیست‌شناسی در فرکانس‌های مختلف) گونه‌های در تحلیل طبیعی، تمادافی بودن
نوسان‌ها در سری‌های زمانی آزمون می‌شود. در این روش، میزان کمک به تحلیل روش‌های
معمول سری‌های زمانی نهایی نوسان‌های محدود و با طول موج‌های گسترش در نظر گرفته
نمی‌شود. بلهکه می‌توان آن‌ها را طول موج‌های نامتنها و در بازه پیوستهای نیز متصور شد
(روبنسون، ۱۳۹۷:۲۸). تحلیل طبیعی، به روش تمایلی یافته‌ای از تحلیل همسازت ۱ ها است
که اولین بار به وسیله ویر ۵ و ۱۹۴۹ و (۱۹۴۹) ارائه شد. توکی ۶ (۱۹۵۰)، به توسعه این روش
پرداخت. کاربرد این روش در مطالعات اقیمی برای اولین بار به وسیله میجی و همکاران
(۱۹۶۶) بیشتر در نهایی و پس از آن در سطح وسیع به وسیله انگلیسی زبانی، نظیر استوکر
و میساک ۷ (۱۹۶۲-۱۹۷۲) و حسن ۸ (۱۹۹۷) به کار گرفته شد. با
این وضع، روش تحلیل طبیعی در کشور ما گسترده توجه به داشته است. نتایج تحلیل
اقلیمی در حوزه اقیمی به وسیله غیر و عسکری ۹ (۱۳۶۸) انجام شده است. تحلیل

3. Power Spectrum Analysis
4. Harmonic
5. Wiener
6. Tukey
7. Mitchel et al
8. Stocker and Mysak
9. Madden and Jones
نتیجه‌گیری‌های کاربردهای علم جغرافیایی سال‌های جدید، شماره 37، نامیستان 94

طیفی به طور وسیعی در رشته‌های مختلف بحث‌ساز در علم طبیعی ازجمله اقیم‌شناسی (کرستینا10، همکاران، 1989؛ آزاد11، همکاران، 2009؛ عویقری و همکاران، 2010؛ عویقری و رزی، 1391، هیدرولوژی (پان جو و لی2)، زمین‌شناسی و همکاران، 1996)، هواپیماسازی و اقیم‌شناسی (سپانژنبرگ و پریدمایر14، 1999) و اقیم‌شناسی (کرکیلا و همیشگران15) مورد استفاده قرار گرفته است. این روش‌ها در همکاران (2008) و همکاران18 مورد استفاده قرار گرفته است. استفاده از تحلیل طبیعی مورد مطالعه و بررسی قرار دادن به مشخصات طبیعی آماره‌های اقیم‌یافته از قبل دانسته و سامانه‌های نموده و سپس با استفاده از تحلیل خوشه ای ایران را بیشتر می‌تواند. آنها در این مطالعه به این نتیجه رسیدند که مشخصات فیزیکی دما و بارش در ایران منبع بوده و افزایش نموده که نشان می‌دهد از هماهنگی بین ماهیت میدان و فرآیندهای اقیم‌یافته نیست. از طرف دیگر اسکاره و رزی (1391) در ایران بررسی طبیعت دقیقه‌ای کلیه مقیاس‌های اقیم‌یافته ایران را به تناوب عوامل قرار دادند و وجود چرخه معنی‌دار در پیش‌بینی شما غرب ایران را به تناوب عوامل کلیه مقیاس‌های اقیم‌یافته ایران نسبت دادند. نام‌بردگان طبیعی چرخه‌های ۲-۳ ساله را به تغییرات دو‌سالانه (QBO) گویز مقیاس گردش عمومی جو و جریان‌های جغرافیایی و چرخه‌های ۵-۶ ساله را به پیدا کرده‌اند. لیوا و همکاران

10 Kristina
11 Azad and et al
12 YanJu and Lee
13 Henne
14 Spangenber and Bredemeier
15 Kirkyla and Hameed
16 Chandler
17 Aririgo et al.
18 Earleand et a l
19 Ghil and et al
20 Olsen et al
21 Lana and Burgueno
22 Quasi Binomial Oscillation (QBO)
تحلیل روند و چرخه‌های سری زمانی پارش سالانه حوضه‌های آب‌زای حله و مند

(2008) 23 نیز به تنهی مشابهی رشد و وجود چرخه‌های ۵ - ۳ ساله را در بارش بیشتر، به همراه با دیواره اکثریت حمایت از طبیعی مطالعه می‌باشد. برای اینکه های حاصل از مطالعه ایشان، چرخه‌های ۳ - ۲، ۵ - ۴، ۳ - ۲ و ۲ - ۱ ساله و نیز یک چرخه غیر سیوی (رون) در سری زمانی دمای سالانه شتر تبریز مشاهده گردد. علی‌پناهی و همکاران (۱۳۹۴) به طوری و تحلیل طبیعی سری‌های زمانی بارش سالانه ایران برداشته‌اند. نتایج کار این‌ها نشان داد که چرخه‌های معنی‌دار ۲ - ۲، ۵ - ۳، ۵ - ۱، ۵ - ۴، ۵ - ۵، ۵ - ۱ و ۱ - ۱ ساله و با گام ۱۱ ساله و بالاتر بر بارش ایران حاکم است. بر اساس نتایج آنها مشخص شده است که در مرحله جنوب شرق ایران بیشتر چرخه‌های ۵ - ۴، ۳ - ۲ و ۲ - ۱ ساله و در شمال غرب و شمال غرب کشور چرخه‌های ۳ - ۲ و ۲ - ۱ ساله در شمال شرق چرخه‌های ۳ - ۲ و ۲ - ۱ ساله غالب هستند.

با توجه به سابقه فوق هدف از این تحقیق شناخت بیشتر الگوی نوسانی حاکم بر بارش حوضه‌های آب‌زای محل و حله می‌باشد. لذا از این مطالعه بارش سالانه ایستگاه‌های باران سنگی و سنگونه‌ای حوضه‌های مرزی در انریکوی کووسازی روند در خاک‌های چن جمله ایفایک خطف و سهمی) و تکنیک تحلیل طبیعی قرار گرفته و چرخه‌های محاسبه و تشکیل حاکم بر بارش این استخراج خواهد شد.

داده‌ها و روش‌کار

در این تحقیق به منظور استخراج و تحلیل چرخه‌های بارش سالانه از آمر بارش سالانه ۱۷ ایستگاه‌باران سنگی و سنگونه‌ای حوضه‌های آب‌زای محل و حله می‌باشد. این بارش‌ها از این مطالعه بارش سالانه ایستگاه‌های باران سنگی و سنگونه‌ای حوضه‌های مرزی در انریکوی کووسازی روند در خاک‌های چن جمله ایفایک خطف و سهمی) و تکنیک تحلیل طبیعی قرار گرفته و چرخه‌های محاسبه و تشکیل حاکم بر بارش این استخراج خواهد شد.

حوضه‌های آب‌زای محل و حله می‌باشد. این بارش‌ها از این مطالعه بارش سالانه ایستگاه‌های باران سنگی و سنگونه‌ای حوضه‌های مرزی در انریکوی کووسازی روند در خاک‌های چن جمله ایفایک خطف و سهمی) و تکنیک تحلیل طبیعی قرار گرفته و چرخه‌های محاسبه و تشکیل حاکم بر بارش این استخراج خواهد شد.

در این تحقیق به منظور استخراج و تحلیل چرخه‌های بارش سالانه از آمر بارش سالانه ۱۷ ایستگاه‌باران سنگی و سنگونه‌ای حوضه‌های آب‌زای محل و حله می‌باشد. این بارش‌ها از این مطالعه بارش سالانه ایستگاه‌های باران سنگی و سنگونه‌ای حوضه‌های مرزی در انریکوی کووسازی روند در خاک‌های چن جمله ایفایک خطف و سهمی) و تکنیک تحلیل طبیعی قرار گرفته و چرخه‌های محاسبه و تشکیل حاکم بر بارش این استخراج خواهد شد.

23. Livada et al
تشریح تحقیقات کاربردی علوم جغرافیایی، سال پانزدهم، شماره ۳۷، تابستان ۹۴

درجه و ۲۰۰ دقیقه تا ۲۹ دقیقه عرض شمالی واقع شده است و مساحت آن ۴۷۴۵۳ کیلومتر مربع می‌باشد. این حوضه در ساحل شمالی و در دامنه بلندی‌های شمال خلیج فارس قرار دارد. حدود ۶۶ درصد از این حوضه را ناحیه کوهستانی و ۳۴ درصد آن را دشت‌ها تشکیل می‌دهند و از زیر حوضه تشکیل می‌شوند که عبارتند از ۱- حوضه آبریز رودخانه چرخ، ۲- حوضه آبریز رودخانه شور و چهار، ۳- حوضه آبریز رودخانه شوردهم و ۴- حوضه آبریز مندمیانی و پایاب. سامانه‌های اصلی باران را بر این حوضه‌ها سامانه‌های مدیرانه ای هستند. به علاوه سامانه‌های سودانی که از آفریقا به سمت جنوب غربی ایران کشیده می‌شوند. اثر محسوسی در ریزش‌های این حوضه دارد. همچنین سامانه‌های موسمی اقیانوس هند نیز می‌توانند منطقه را تحت تأثیر قرار دهند (وزارت نیرو، مطالعات بهداشت و سازی طرح جامع آب کشورخور، حوضه‌های آبریز، مهندسان مشاور) (۱۳۹۲). در شکل ۱ محدوده جغرافیایی حوضه‌های آبریز و موقعیت استان‌های مورد مطالعه نشان داده شده است.

شکل (۱) موقعیت استان‌ها و حوضه‌های آبریز منطقه مورد مطالعه در سطح شهر
تحلیل طیف

24. Periodic
25. Amplitude
26. Frequency

\[Y(t) = \sum_{k=1}^{K} A_k \sin(2\pi f_k t + \phi_k) \]

که در آن \(A_k \) امplitude، \(f_k \) Frequency و \(\phi_k \) Phase 각 که به‌معنی تأثیرات مختلف بر روی تغییرات فیزیکی و شتاب‌های حاصله برای آزمایشات مختلف هستند. این تغییرات ممکن است به‌عنوان آماری، طبقه‌بندی یا اثرات خاصی باشند که در آزمایشات واقعی باید در نظر گرفته شوند.
موج‌ها را استخراج کرده و به‌وسیله یک از موج‌ها در واریانس کل در عضویت، تک تک موج‌ها از لحاظ معنی‌داری آماری بررسی می‌شود. به طور کلی برای استخراج چرخه‌ها تحلیل طیف مرحله‌ای زیر انجام می‌شود:

- تبدیل سری زمانی به فرکانس: برای تبدیل سری زمانی به فرکانس و محاسبه هارمونیک‌ها با استفاده از رابطه زیر پارامتر را حساب کرد (جهت ترجیح نیکتر و بزرگ‌تر، 1381):

\[
\begin{align*}
a_i &= \frac{2}{n} \sum_{t=1}^{n} X_t \cos\left(\frac{2\pi q t}{n}\right) \quad q = 1, 2, \ldots, \frac{n}{2} \\
b_i &= \frac{2}{n} \sum_{t=1}^{n} X_t \sin\left(\frac{2\pi q t}{n}\right) \quad t = 1, 2, \ldots, n
\end{align*}
\]

در رابطه فوق q تعداد هارمونیک‌ها (هم سازه‌ها) می‌باشد که برای سری‌های زوج به تعداد \(\frac{q}{2} \) (هم ساز خواهیم داشت.

بتایی از رابطه زیر واریانس هر یک از فرکانس‌ها (موج‌ها) حساب می‌شود:

\[
I(f_i) = \frac{n}{2} (a_i^2 + b_i^2)
\]

آزمن معنی‌داری طیف: برای آزمن معنی‌داری ابتدا با دسته‌بندی عناصر سری انجام رساند:

- محاسبه میانگین طیف (\(\overline{S} \))

\[
\overline{S} = \frac{1}{q} \sum_{i=1}^{q} I(f_i)
\]

- محاسبه طیف پرای یک سری تصادفی با مشخصات (\(\overline{S} \) و (\(\overline{r}_1 \)) سری موجود با استفاده از رابطه زیر:

\[
\hat{r}_i (f) = \overline{S} \left[\frac{1 - r_1^2}{1 + r_1^2 - 2r_1 \cos\left(\frac{\pi \times i}{q}\right)} \right] \quad i = 1, 2, \ldots, q
\]

بدین ترتیب طیفی که حاصل می‌شود با مشخصات (\(\overline{S} \) و (\(\overline{r}_1 \))، نه دارای روند می‌باشد و نه سیکل، برای آزمن ابتدایی یک فاصله اطمنان (عوام 95 درصد) مشخص می‌کنیم که کدام از طیف‌ها (فرکانس‌ها) سری زمانی خارج از فاصله اطمنان باشد آن چرخه‌ها معنی‌دار
تحلیل روند و چرخه‌های سری زمانی باش سالانه حوضه‌های آب‌زی حله و مند

خواهند بود. بنده منظور از آزمون χ^2 استفاده می‌شود. درجه آزادی آزمون از رابطه زیر به دست می‌آید:

$$df = \frac{2n - q}{q}$$

(7)

با این درجه آزادی و با یک سطح اطمینان 95 درصد، با استفاده از مقادیر جدول χ^2 معنی داری با استفاده از رابطه (زیر) محاسبه می‌شود:

$$\text{sig}\hat{I}(f) = \frac{\chi^2}{df} \times \hat{I}(f)$$

(8)

برای چرخه‌های که در آن ها مقادیر واریانس $I(f)\hat{I}(f)$ نهایت به کوساری روند در خوانا ند جمله ایپا سری زمانی روند سالانه از Matlab نرم افزار و برای اعمال برنامه نویسی بر تکنیک تحلیل طبیعی از نرم افزار Minitab برای استخراج و ترسیم دوره‌ها گزارش‌های سری زمانی باش سالانه ایستگاه‌ها استفاده شده است.

بحث و نتایج

یه منظور ارائه تصویری از رفتار سری زمانی باش سالانه در حوضه‌های آب‌زی (مقدار و هله) مقدار تغییرات روند سری زمانی باش تک تک ایستگاه‌های بران، نسجی و سی‌جی تک (لاس‌بان) در مقطع سالانه در معرض مدل سازی در خوانا ند جمله ایپا قرار گرفت منع بر روی روند مشخص شود. همانگونه که در بخش روش ما بیان شد در کوساری خوانا ند جمله ایپا مشخص می‌شود که کدام یک از ایستگاه‌های خطي یا سه‌پیمی با الگویی دیگر برای هنگام سری زمانی روند ما بیان می‌شود. با اعمال این کوئاسی روند جمله ای سری زمانی باش ایستگاه‌ها مشخص شد و نتایج آن در جدول شماره 1 ارائه می‌شود. افتراق بر ارائه نوع الگوی خطی یا سه‌پیمی در روند باش سالانه منطقه مورد مطالعه معنی داری آماری این الگوها نیز در سطح 95 درصد اطمینان به همراه نموهای آنها در ایستگاه‌های که این روند معنی دار را نشان می‌دهد، در جدول 1 مشاهده می‌شود از مجموع 37 ایستگاه مورد نظر در منطقه تناها ایستگاه از الگوها خطي و سه‌پیمی روند دارند. لازم به توضیح است که مقدار آماره P-value < 0.05
تشنیم تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷، تایван ۹۴

d) در سطح ۹۵ درصد، هر مقدار معنی داری آماره آزمون (t) این شیب در زیر ۴۰ ثبت می‌شود نشان دهنده شده است. روند مورد نظر در استگاه‌های مورد مطالعه حاکی از روند کاهشی بارش در این منطقه می‌باشد. شایان ذکر است که برای معنی داری نیودن سایر استگاه‌ها از اوردن نام و نمونه آنها خوداری شده است. البته باید اعلام کرد که در سایر استگاه‌های که این روند معنی دار از احراز نشد، بارش دارای روند کاهشی می‌باشد، اما مقدار این کاهش در برخی استگاه‌های منطقه مورد مطالعه شدید بوده و در برخی نیز این روند دارای روند کاهشی نسبی بوده است. در این میان استگاه‌های سه، سرمایه، کارزن، و آذر دارای روند کاهشی شدیدتری نسبت به سایر استگاه‌ها در مجموع ۷۷ استگاه مورد مطالعه می‌باشد. بنابراین مثال استگاه ایج که از این روند خاطر بپری می‌نماید دارای روند کاهشی بارش سالانه به ارتفاع هر سال (۲.۲۶) میلی متراً است. فاصله از نمودارهای مربوط به انگورش روند بارش سالانه در استگاه‌های منطقه شمالی خلیج فارس (حوضه‌های آبی ۱۹۵۵ تا ۱۹۶۰) مشاهده می‌شود. روند سری زمانی بارش سالانه به‌صورت گروهی خصوصی و سهمی حاکی از افت کاهشی میزان بارش خصوصاً طی سال‌های آخر می‌باشد. اما نتایج کلی که این میزان رفتار کاهشی همانگونه که بین شده است در برخی از استگاه‌های دایر شدید بیشتری در طول زمان می‌باشد. میزان روند گروهی سهمی در برخی از استگاه‌ها ازجمله (جرد، حسینیان، حسینیان) وجود آنها داده است. با این اوضاع انگورش‌های خانواده چند جمله‌ای حاکی از کاهش بارش در تمامی استگاه‌های مورد مطالعه بوده و این کاهش در تمامی استگاه‌ها روی شدن.
جدول (1) تعبیر روند اکوپلای معیار چند جمله ای (خطی و سپتی) بر اساس سالانه ابزارگاه های حوضه های آبیز منطقه شمالی خلیج فارس (حوضه آبیزمند و حله)

<table>
<thead>
<tr>
<th>نام ایستگاه</th>
<th>نوع اکوپلای</th>
<th>معادله ارزیابی شده به همراه مقادیر معنی‌داری (ازون (1 -student)</th>
<th>P value</th>
<th>واریانس باقی مانده</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایج</td>
<td>الگوی خشک</td>
<td>$Y_t = 375.12 - 7.3t$</td>
<td>0.024</td>
<td>2354.00</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>الگوی سپتی</td>
<td>$Y_t = 256.4 + 14.91t - 0.380t^{**.2}$</td>
<td>0.005</td>
<td>1618.00</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>جرم</td>
<td>$Y_t = 285.7 + 15.44t - 0.393t^{**.2}$</td>
<td>0.056</td>
<td>1856.66</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>جوکان</td>
<td>$Y_t = 344.2 + 16.39t - 0.424t^{**.2}$</td>
<td>0.028</td>
<td>3272.73</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>حنیفلان</td>
<td>$Y_t = 401 + 56.3t - 1.505t^{**.2}$</td>
<td>0.024</td>
<td>84935</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>دشت ازرن</td>
<td>$Y_t = 214.0 + 20.5t - 0.953t^{**.2}$</td>
<td>0.051</td>
<td>4048.50</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>دهدرخور آباد</td>
<td>$Y_t = 427.4 - 4.14443t$</td>
<td>0.031</td>
<td>37142</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>شبیه</td>
<td>$Y_t = 196.8 + 8.86t - 0.2052t^{**.2}$</td>
<td>0.059</td>
<td>1066.83</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>فرند</td>
<td>$Y_t = 176.6 + 18.15t - 0.563t^{**.2}$</td>
<td>0.019</td>
<td>12.977</td>
<td>27358.8</td>
</tr>
<tr>
<td></td>
<td>کارون</td>
<td>$Y_t = 662.4 - 10.2511t$</td>
<td>0.020</td>
<td>5021.00</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>لارسان</td>
<td>$Y_t = 314.9 - 10.3969t$</td>
<td>0.015</td>
<td>110.9</td>
<td>2.31</td>
</tr>
</tbody>
</table>
شکل (۲). نمودارهای تعیین روند الگوهای جند جمله ای (خطی و نیستی) بارش سالانه استفاده های
منطقه شمالی خلیج فاس (حوزه آبریزمند و حله)

نشریه تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷، تابستان ۹۴
تحلیل روند و چرخه‌های سری زمانی بارش سالانه حوضه‌های آبریز حل، و مند

در ادامه نیز به منظور تحلیل چرخه‌های بارش سالانه حوضه‌های آبریز مند و حل، از تکنیک تحلیل طیفی استفاده گردید. برای نیل به این منظور، ابتدا نمودار دوره 27 سری زمانی بارش تک تک ایستگاه‌ها ترسیم شد. دوره نگار نموداری است که در آن محور عمودی برآورد طیف (ویژه بازیکنان) و محور افقی بسامد (احتمال‌فرآیندی) چرخه‌ها را نشان می‌دهد. خط شکسته طیف (میزان واریانس) به ازای ساده (زمان) های مختلف را ارائه می‌نماید. همچنین این خطوط شکسته مستطیلی شکل شماره چرخه‌ها (هم سازها) را نشان داده، بدین ترتیب که اولین خط شکسته مستطیلی شکل از سمت چپ به عنوان هم ساز اول (یک چرخه در طول دوره آماری) می‌باشد. خط چین متر معنی داری چرخه‌ها در سطح 95 درصد اطمنان می‌باشد. چرخه‌های که طیف (ویژه بازیکنان) آنها نسبت به محور عمودی واریانس‌های طیف چرخه‌ها (هم سازها) را نشان

می‌دهد. خطوط شکسته مستطیلی شکل چرخه‌ها (هم سازها) می‌باشد. ارتفاع (دامنه) این هم‌سازها که با کی‌مقدار از محور عمودی نظر سه‌نگه رویمانند بسامد واریانس چرخه‌های ای دامنه پیش‌تری داشته بود در واریانس پیش‌تری از طیف‌های گرا به‌خود اختصاص داده اند. معنی‌داری هریک از چرخه‌ها در سطح اطمنان 95 درصد آزمون شده است. در شکل 3 سطح معنی‌دار در سطح اطمنان 95 درصد با خط چین و سطح تصادفی بوده هم‌سازها با خط نازک پیش‌بینی نشان داده است. بطوریکه ملاحظه می‌شود هر دو استقلال مورد نظر در حوضه آبریز حل و مند دارای چرخه‌های معنی‌داری در سطح 95 درصد اطمنان می‌باشد، لذا با این تفسیر مشاهده می‌شود که در استقلال اهم‌ساز‌های آبریز حل، و مند

27. Periodogram
28. لازم به توضیح است که نمودارهای دوره‌گذار مختلف برای طول دوره آماری مشابه ترسیم شده است. برای هر نموداری از طریق یک سری زمانی 90 باشند هم‌ساز روی معنی‌دار و مند چرخه در 95 درصد آلیت ذکر شده است. مواردی که نشان جمع‌آوری و واریانس نشان داده که برای هم ساز اول دوره باورگشت برای با طول دوره آماری مثلاً 30 سال می‌باشد. تعداد هم سازها نیز برابر با نصف طول دوره آماری است.
معنی دار یا همان چرخه‌هاي یا بادزوره بارگشت در بايش رويت مي شوند. پله هاي معنی دار را مي توان در هر دو اينستگاه با گذر از مرز اطمینان مورد نظر با خطاي 5 درصد ملاحظه نمود. در اهرم سه چرخه با هم‌ساز و در اينستگاه احمد آباد شوراب دو هم‌ساز معنی دار قابل مشاهده است (شکل 3). مثلاً اگر در نمودار دوره نگار هم‌ساز اول معنی دار بايش دوره بارگشت سري زمانی مزبور (دراينجا بارش سالانه) طول یکبار با طول دوره آماری خواهد داشت. معنی داري هم‌ساز اول حاکی از وجود روند در داده هاست. در نتیجه در هر دو اينستگاه چرخه ای مشاهده مي شود و چرخه هاي دار اينجا مي دارند و تصادفي نمي باشند. در دوره نگار اينستگاه اهم سه هم‌ساز یاد دانه بلند بوده و از راه زندگي را به خواد اختصاص داده انده. دوره بارگشت اين چرخه ها عمداً از دو سال تا 11 سال مي بايش. اشکال 4و5 نيز دوره نگارهي مربوط به بارش اينستگاه‌هاي حوضه را نشان مي دهند.

![شکل 3 دو دوره نگارهای ایستگاه‌های اهرم و احمدآباد شوراب (اهرم 3 چرخه معنی دار، احمد آباد شوراب دو چرخه معنی دار)](image)

در ادامه به منظور بررسی وضعیت تعداد چرخه‌های معنی دار در دوره بارگشت آنها به برخی از مشخصات آماری مورد نظر در جدول 3 برداخته مي شود.
جدول (2) مشخصات آماری جرخه‌های بارش سالانه استیگمای ورد مطالعه

شماره جرخه‌ها	اثرات بارش سالانه (درصد واریانس)	احتمال	شماره بارش‌ها	(هموندی) معنی‌دار	امکان	طبیعت
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						

توجه بارش‌ها (هموندی) معنی‌دار

- هموندی معنی‌دار در شماره بارش‌ها
- طبیعت مطالعه

تشریح، سپرخیز، سازمان‌های حوضه‌های آبریز حل و مند
در بین استقاضه‌های مورد مطالعه، همان‌طور که در شکل ۴ ملاحظه می‌شود استقاضه‌های کل و ول فاقد هرگونه جرخه غالب و معنی‌داری باشند. به عبارت دیگر در سری رمانی بارش کل و ول استقاضه ابریان‌تهم طیف‌های دار از بین تمام‌های ساره‌ها به نسبت تقریبی برای توزیع شده است و در سطح اطمینان ۹۵ درصد جرخه معنی‌داری مشاهده نمی‌شود. بنابراین استقاضه‌های همان که از نظر موقعیت بارش‌های همسان گروه خاصی حاکم نیست، بارش سالانه این استقاضه‌ها رفتار تصادفی دارد.

شکل (4): دوره نگاره‌های استقاضه‌های لار و کل (عدم وجود جرخه معنی‌دار)

در استقاضه‌های دیگر منطقه مورد مطالعه از جمله (رک، لار، و رود، بی‌بي‌حما، نگان، فیروزآباد، جهر، چهارگان، زیانکار، علی‌آباد خفر، کل و فرشنبند) هیچ جرخه معنی‌داری از نظر آماری مشاهده نشده. بطوریکه از بین ۲۷ استقاضه حدود ۱۲ استقاضه منطقه مورد مطالعه بدون جرخه معنی‌دار می‌باشند. بنابراین نشان دهی که مطالعات حوزه مورد نظر حدود ۶۹۲۲۲ هزار کیلومتر مربع می‌باشد و نبود جرخه در بین استقاضه‌ها می‌تواند ناشی از وضعیت حوزه مورد مطالعه باشد. بطوریکه براساس مطالعات افرادی همچون دیکسون و همکاران (۲۰۰۵ و کاموی و هالم (۲۰۰۶) می‌توان ادعای داشت که شرایط فعلی و زد و خر و پدیده‌های آبیک از نظر تغییرات بالا می‌توانند این است که تولید دی (روانبند) می‌نماید. نما نماید. بنابراین معنی‌داری نبود که یکان در سری‌های آبیک بر طبق اذعان آنها می‌توان ناشی از عوامل و شرایط فعلی و در دید شرایط زد و خر و پدیده‌های حوزه دانست. با این اضافه و باتوجه به اینکه جرخه معنی‌داری در این استقاضه‌ها مشاهده

تماشایی تحقیقات کاربردی علوم جغرافیایی سال پایان‌هایش، شماره ۳۷. ناسیان
تحلیل روند و چرخه‌های سری زمانی بارش سالانه حوضه‌های آب‌زنا و مند

نتیجه‌گیری از ترسیم دوره نگارها و ذکر نام آنها در جدول مشخصات آماری چرخه‌های معنی‌دار در حوضه مورد مطالعه دادگاهی شده است.

شکل (۵). نمودارهای تحلیل طیفی سری‌های زمانی بارش سالانه استوانه‌ای حوضه‌های آب‌زنا و مند شمایل خلیج فاس (حوضه حله و مند)
در ادامه اگو‌هایی که می‌توانند منجر به ایجاد جرخه‌های پارشی در یک منطقه شوند با استناد به برخی مطالعات و مقایسه نتایج کارآ Beck با نتایج مأخوذ از ان پژوهش مورد قیاس قرار گرفته و مشخص شده‌اند. هم‌طور که مشاهده می‌شود فراوانی جرخه‌های ۲-۳ ساله از بقیه بیشتر است و چنانچه در جدول ۲ مشاهده شد، جرخه‌های متناژ با تقریب نزدیک به ۲
شیِ تحقیقبت کبسثشدی علَم جغشافیبیی ػبل پبًضدّن، ؿوبسُ 48، تبثؼتبى 5.

۳۷۵

شیِ دس تیٗ ایؼسٍاٟٞا تیـسشیٗ فشاٚا٘ی سا داسا ٔی تاؿٙذ، ایٗ چشخٝ ٔـاٞذٜ ٔی ؿٛد. دس ایٗ ؿىُ چشخٝ ٔؼٙی داس دس خّٛی ٘اْ ۲۹. Elnino Southern Oscillation (ENSO)

۳۰. Kane and Teixeira

۳۱. Hartmannb and et al

۳۲. Azad obra te oy

۳۳. Kalaygib obra te oy

سال در بین ایستگاه‌ها بیشترین فروایی را دارا می‌باشند. ۵ ایستگاه تبریز، احمدآباد، شورآب، بوشهر کازرون، دشت ارز، هنگام و فیروزآباد دارای ۲ چرخه معنی دار می‌باشند. سایر ایستگاه‌های منطقه نیز حداکثر دارای یک چرخه معنی دار در طول سری زمانی بارش سالانه هستند. بنابراین از نظر فراوانی تعداد چرخه‌های معنی‌دار یک چرخه با فراوانی ۱۸ ایستگاه بیشترین نسبت را به خود اختصاص داده است. همان‌طورکه در جدول ۲ نیز مشاهده شده و بر اساس نتایج بدست‌آمده، چرخه‌های ۲-۳ بیشترین حاکمیت را در بارش‌های مورد مطالعه دارند. بیشتر دانشمندان این چرخه‌ها را به ال نینو- نوسانات جنوبی (ENSO) و تغییرات دو‌سالانه (QBO) ایستگاه‌های جغرافیایی بیشترین نسبت را به خود اختصاص داده اند.

۲۹. Elnino Southern Oscillation (ENSO)

۳۰. Kane and Teixeira

۳۱. Hartmannb and et al

۳۲. Azad obra te oy

۳۳. Kalaygib obra te oy

دانستند. همچنین عناکره و رزمی (۱۳۹۱) نشان دادند که چرخه‌های ۵-۳ ساله نشان‌دهنده در بارش‌های غرب ایران ایفای می‌کند. این نتایج با منطقه‌ای متفاوت می‌باشد. جایگاه سکونتگاه‌ها و عوامل دوست (۱۳۸۷) تأثیر یافته چرخه‌ها را قادر به رفع از منطقه اثرپذیری تک و چرخه‌های فعال بر یافته در جغرافیایی و نوسانات شماری داشته‌اند. همچنین چرخه‌های غرب سیویسی که در بزرگ‌شهر مرکزی با طول دوره آماری دارند در برخی ایستگاه‌ها از قبل با یک چرخه‌های می‌باشد. این چرخه‌ها به خود بهره‌وری در داده‌ها نسبت داده می‌شوند.

۲۹. Elnino Southern Oscillation (ENSO)

۳۰. Kane and Teixeira

۳۱. Hartmannb and et al

۳۲. Azad obra te oy

۳۳. Kalaygib obra te oy
ایستگاه‌ها نمايش داده است. چرخه‌های متعدد برای برخی از انستگاه‌ها با امتداز تعداد
ردیفی از شماره‌های چرخه در شکل متمایز می‌باشد. همانطور که از این شکل قابل استنباط
است در مرکز و شرق حوضه حاکیست از آن تک چرخه‌های غالب می‌باشد. همچنین در اکثر
محدوده حوضه چرخه‌های ۲ و یا ۲ چرخه مکانی در برخوردار براکدی مشاهده می‌شود. بطوری‌که قابل مشاهده است در منطقه عمتماً چرخه‌های ۲-۳ ساله و بالاتر حاکم هستند.

(۳) توزیع فضايي چرخه‌های معنی‌دار در منطقه مورد مطالعه

با توجه به این كه پارش‌های این یک نیز می‌توان به رشد این چرخه‌ها با ازبین‌گرفتن در سطح شکسته و به‌طور دیگر برخوردار قرار داشته که با توجه به تحقیقاتی که در سطح شکسته نیز می‌توان ادامه داشته که در سطح شکسته

بیان نمود که در غرب کشور بیشتر چرخه‌های ۲-۳ ساله حاکم هستند. در شمال غرب و شمال‌شرق حوضه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌های ۲-۵ یا ۳ نیز حاکم هستند. بنا براین در این مناطق تغییرات دوسلانه (QBO) بر چرخه‌
نتیجه گیری

روش تحلیل طیفی به چهت استخراج افت و خنیرو، نوسانات و موج های نپته و آشکار بحری در مقایسه زمینی از اهمیت علمی و عملی زیادی برخوردار است. موج های دختری معطوف به حرکات ابریتی، موج های گریزگاز و جنوب غربی همچنین شباهت بین داده های دو درون بالا را نشان می دهد.

تغییرات در مقایسه گروه‌هایی مشخص و خاصی حاکم نیست و بارش های مشابه دارای تغییرات زیادی از نظر نکور کلسیم. به عبارت دیگر در این مناطق طبیعی می تواند باعث تغییرات مختلف در کلسیم بارشی شده است.

می توان گفت که علاوه بر سیستم های کلاسی مقایسه جوی که در بالا توضیح داده شدند، طبیعی محلی و همگونی نیز در موقعیت محلی بارش دریایی های زیادی می تواند باعث تغییرات در کلسیم بارشی شود. در حالی که در سایر بخش های کشور سیستم های محلی بارش پیچیده زیادی دارند و طبیعی محلی نقش بیشتری در رخداد بارش دارند. در مجموع شما غرب و نا حذفی غرب و همچنین شرق و جنوب شرق ایران دارای چرخه یکنواحی مثلا در و غلب متعدت می باشدند، در سطحی که شمال شمال شرق و جنوب غرب کشور اکثری نک نک که در به مرحله یک واقعی که نهادن وجود این چرخه یا هرگونه از نک نهادن می توان گفت که وجود این چرخه یا تغییرات دوستانه بزرگ مقایسه جوی و پدیده انسو همانندی هستند.

مشارکت

شماره ۳۷ تابستان ۹۴
تحلیل روند و چرخه‌های سری زمانی بارش سالانه جریان های آب‌زیان حل‌هوا و مند

معنی دارد بودن و حدود ۱۲ استگاه که به عنوان عدم وجود چرخه از ترسیم و تحلیل دوره نگار آنها صرف نظر شدند. بنابراین آنها دو مورد از استگاه‌های که برای درک واحبدیه عمد وجود چرخه جهت ترسیم دوره نگار آنها آورده شدند. وجود چرخه‌های سینوپسی-۳ نویسدن دارای بالاترین فراوانی چرخه‌های معنی‌دار هستند. همچنین به دلیل گسترش بودن مقادیر در دوره نگار، فرکانس‌های ۴ تا ۵ و ۷ تا ۹ ساله در دوره نگار در هر دو حالت میانی یا بالای مقادیر باشد. این باعث می‌شود تا آن استگاه‌های چرخه‌ای ما باشد. استگاه‌های هم‌سرایی با داشت ۳

چرخه‌های استگاه‌های با نزول جریان معنی‌دار در (هم‌ساز) در بین استگاه‌ها شناخته شد. سایر استگاه‌هایی که از نظر وجود چرخه معنی‌دار در نظر گرفته نشدند که در بالاترین نسبت را دارا هستند. عواملی از قبیل مجاورت با آب‌های خليج فارس و دریای عمان (جوش دید و جریان) حرارت و نیز هواپیمای زاگرس نیز که تنها باید نوبت زیاد در افرادی پارسی این منطقه شود. در نهایت با نوه ی به بررسی محققین و اندیشمندان در سایر نقاط جهان، چرخه‌های مشابهی در عناصر اقیمتی مشاهده شده است.

که آنها به تناول به صورت شده در سری زمانی ENSO, NAO, QBO و مانند، نوسانات ذکر شده از جمله با چرخه‌های استخراج شده در سری زمانی بارش سالانه منطقه مورده مطالعه در ارتباط باشد. لذا این نوع تحلیل و دوره‌های معنی‌دار در چرخه‌های با یازگشت آنها از طریق شرایط پیوند از دور بر تناول بارش سالانه و رژیم بارش حوضه مورد مطالعه پیشنهاد می‌شود.

تشکر و یادداشت

این مقاله برگرفته از رساله دکتری با عنوان تحلیل آماری سیستم‌کی تغییرات رژیم بارش منطقه شمالی خلیج فارس مورد مطالعه: حوضه‌های آب‌زیان حل‌هوا و مند ما برگزاری. لذا مراتب قدردانی را از اینکه راهنما و مشاوره خود دارم.
نشریه تحقیقات کاربردی علوم جغرافیایی سال 1363، شماره 37، تابستان 94

منابع و مأخذ

1. بیات، علی (1390). تحلیل سری‌های زمانی بارش زنجان. پایان نامه کارشناسی ارشد اقلیم شناسی، گروه جغرافیا (اقیم‌شناسی)، دانشگاه زنجان. دانشگاه علوم انسانی و اجتماعی. شماره 1390. البته در کتابخانه ملی.

2. نقوی، فرحناز، ناصری، محسن، بیات، برکیا، متولیان، ساجد، آزادی، فرد، داوود (1390). تعبیر اقلیم و فاصله اقلیم در مناطق مختلف ایران بر اساس تحلیل طیفی و خوشه بندی مقالات در دو تکه و دما، چتر گزارش مطالعات جغرافیایی، شماره 1390.

3. جهانبخت، سعید و محمود عدلت دوست (1387). تغییرات اقلیم در ایران (مطالعه موردی: شاخه نوسانات اطلس شمالی). پایان نامه کارشناسی ارشد، دانشگاه تبریز. گروه جغرافیا و برنامه ریزی محیطی، دانشگاه تبریز.

4. عسکری، حسین و یزدانی، حسین (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

5. عسکری، حسین و یزدانی، حسین (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

6. عسکری، حسین و یزدانی، حسین (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

7. عسکری، حسین و یزدانی، حسین (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

8. عسکری، حسین و یزدانی، حسین (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

9. غفوری، حسنعلی و عسکری، حسین (1384). کاربرد مدل‌های فوریه در پراورد دما تغییرات و آینده نگری آن، مطالعات موردی: دما مشهد، فصلنامه تحقیقات جغرافیایی، شماره 76، صفحه 1391.

10. وزارت نیرو (1391). تحلیل تغییرات بارش سالانه شمال غرب ایران، جغرافیا و برنامه ریزی، شماره 3، شماره 1391.

Note No. 79, Report of Working Group of Commission for Climatology; WMO No . 195 TP 100: Geneva, Switzerland, World Meteorological Organization, 81 P.

