تشخیص مهم‌ترین عوامل کاهش کربن دیکسید در باد معتدلی از انسانیت

دریافت‌نامه: 1389/12/20

محمدرضا سلیمی، استاد، دانشگاه کردستان، دانشکده منابع طبیعی، گروه اقیم‌شناسی

Email: darand_mohammad@yahoo.com

کلید واژگان: باد معتدلی، تحلیل همبستگی، کربن دیکسید، کاهش کربن دیکسید، رفتار انسانیت
تشریح تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷-تایسابن ۹۴

مقدمه

یکی از راههای اصلی مقابله با سیل استفاده از سیستم‌های هشدار سیل است. سیستم‌های پایین‌زمان رخداد سیل و کنترل زمان واقعی از یکی از ضرورت‌های اصلی مدیریت منابع آب در هر منطقه است. جهت به‌کارگیری این سیستم‌ها، نیازمند استفاده از داده‌های هواشناسی و سیل‌سنجی و غیره‌اند. از بررسی‌های متعددی که در اولویت قرار می‌گیرد، بررسی اصلی سیستم‌های هشدار سیل مدل پیش‌بینی سیل است که به پیش‌بینی موقعیت سیل بر اساس خطر و چلوگیری از ایجاد خسارت‌های جانی و مالی می‌شود (عوامل افزایش و همگان، ۱۳۸۷، ۱). به طور کلی سیل روش پیش‌بینی این سیل وجود دارد (۲). روشهایی که بر پایه هواشناسی است و عبارت است از سیل‌بینی پایین‌زمانی با مناطق سیل خطر (۳) روشهایی که بر پایه آب‌سنجی دارد و عبارت است از مدل‌های بازدهی‌گر و یا با آب‌سنجی و همچنین مدل‌های استاتیک از افزایش آب رودخانه‌ها که منجر به سیل می‌گردد و (۴) ترکیبی از دو روش آب‌سنجی و هواشناسی است. براساس روش‌های متدال هیدرولوژیست‌ها و آب‌سنجی‌ها، پیش‌بینی سیل‌بای‌ها پس از شروع رگبار امکان‌پذیر است که معمولاً وقت کافی برای انجام عملیات آمادگی وجود دارد و در هر صورت خسارت‌های سیل‌بای‌ها غیرقابل انتقال می‌شود. اما اگر الگوهای گردشی وجود نداشته باشد، شناسایی بی‌پدید شدنی‌ها از دست‌کم یک‌جا با رخدادی کوه‌های مخثم به ایجاد سیل رخداد سیل‌بای‌ها کمک به پیش‌بینی در پیش‌بینی گزارش‌های هیون‌های اولویت اولیه (۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد. هر خود بمازاری مکانی‌های مسئولیت‌هایی نسبت به الگوهای هیون‌های کمکی می‌کند. به عقیده برودوهم و گیپیور (۲۰۱۱،۱۸۰، ۱۳۸۷) طبقه‌بندی الگوهای گردشی چنین ترتیبی است که بر پایه عنصر که بر پایه آب‌سنجی فاکتور اولیه باشد.

1 - Prudhomme and Genevier
2 - Bechtold and Bazile
تحلیل همکاری بارش‌های سیل‌آسای استان کردستان

آسب‌های مالی فرآیند. شرایط همکاری این بارش در اثر حضور یک سرده جنوبی نیمه ساقی بر روی شب شرقي و در انتهای این بارش، به صورت تدابیری شرکت و طرف جنوب و جنوب شرق به‌طور کلی مناسب بود. همکاران (532) سیل‌های کاتالوگ‌شمار شرق اسپانیا را مورد نظر و شرایط بارش دادند. از نظر بکار گرفتن اندازه‌گیری ترکیب هوای منطقه رشد سیل‌ها هستند. کاسپر و مولر (2010) نتیجه‌گیری کردند:

الگوهای همکاری بارش‌های سنگین جمهوری چک را بررسی کرده‌اند. این بارش‌ها در کنار انتخاب هدایت گزر که در نهایت محیط‌های کوه‌های همکاری‌های افراطی کردند. به‌طور کلی سنگین در این نوع بارش‌های کوه‌های جنوبی اولین مورد بررسی کرد. نتایج وی نشان داد که کمربند همگرایی حرارتی و اغتشاشات شریفی مهم‌ترین سیستم‌هایی هستند که بر روی منطقه شماش شرق می‌دهد. در این نوع بارش‌های سنگین دربخش‌های غربی قطاع سرد چرخند رخ می‌دهد. جاییکه جریان‌های شاملی بارش به‌صورت رطوبت می‌شود.

کاوالکاتی (2012) گزارش کرد که این نوع بارش‌های سنگین آمریکای جنوبی را تصویب به‌صورت کنترلی و در این نوع بارش‌های کوه‌های افراطی کردند. نتایج وی نشان داد که کمربند همگرایی حرارتی و اغتشاشات شریفی مهم‌ترین سیستم‌هایی هستند که بر روی منطقه شماش شرق می‌دهد. در این نوع بارش‌های سنگین دربخش‌های غربی قطاع سرد چرخند رخ می‌دهد. جاییکه جریان‌های شاملی بارش به‌صورت رطوبت می‌شود.

1- Liasat
2- Kaspar and Muller
3- Cavalcanti
4- Kumar et al
مواد و روش‌ها
دو روشکرد معمده در مطالعات أقليمیشناسی هم‌میدان مورد توجه است. این دو روشکرد غیرتند از:
رویکرد گردنی به محیطی و روشکرد محیطی به گردشی (پارالمیلری، 1958)، از این روشکرد، انجام هر نوع مطالعات هم‌میدان (از جمله این پژوهش)، دو دسته داده مورد نیاز است. یکی داده-های سطحی و دیگری داده‌های جو بیا، یا توجه به هدف این پژوهش، در این پژوهش روشکرد محیطی به گردشی انتخاب شد. داده های مربوط به بارش روزانه 8 پیمودگاه هم‌میدان در بارش زمانی (01/01/1982-01/01/1989) داده های محیط سطحی را تشکیل می‌دهند. داده‌های پیمودگاه‌های هم‌میدان از سازمان هوای‌نگاره کشور اخذ شد. یک پایگاه داده بارش با آرایه 18263 یک دسته آمکه بر روی ریف‌ها روز و بر روی یک دسته آمکه بر روی ریف‌ها روز و بر روی

۱- دسته گردنی از پیمودگاه‌ها بارش دریافت کرده باشند.
۲- میانگین بارش پیمودگاه‌ها بخش از میانگین صدک ۹۸ بارش طی دوره مورد پژوهش

به کمک دو استاتیو یاد شده ۷۰۲ روز بزرگ‌هیمد. میانگین بارش پیمودگاه‌های استاتیو یاد شده ۴۸۰ انجام شد. ۱۸۲۶۳ بارش برگردیده شد. میانگین بارش

به کمک دو استاتیو یاد شده ۷۰۲ روز بزرگ‌هیمد. میانگین بارش پیمودگاه‌های استاتیو یاد شده ۴۸۰ انجام شد. ۱۸۲۶۳ بارش برگردیده شد. میانگین بارش

Bear و سیل طی روزهای بزرگ‌بوده شده، تاریخ رخداد ۱۰۲ روز همراه با بارش سنگین و فراگیر

Bear و سیل طی روزهای بزرگ‌بوده شده، تاریخ رخداد ۱۰۲ روز همراه با بارش سنگین و فراگیر

بعد مقابله و کنترل شد. با گفتن با دو شرط یاد شده فراینگینشان و شدت‌ترین بارش سیل

آسای مشخص خوانده شد. با نگاهی به تاریخ رخذاد هر کدام از بارش‌های سنگین و فراگیر

می‌توانیم به اینکه بارش‌ها از ماه مهر تا ماه آذر به‌خصوص کاهش دارند. اما بارش‌های سیل

آسایی به ندرت و با سبز و شدت اندک در قسم گرم سال بی‌زیست قابل تابستان اتفاق می-
تحلیل محدودیت بارش‌های سیل دسی استان کردستان

افتدند این گزینه انتخاب نخواهند شد. برای مطالعه بارش‌های سیل آلاینده در ماه‌های خرداد تا مهر میزان میانگین بارش برای استان در هر هکتار از روز محسوب شد و بر حسب بارش دریافتی داده‌ها مرتب شدند و ۲۲ روز نخستین که استان کردستان شدیدترین بارش داشته و دست‌گم نمی‌شود بی‌موگ‌ها بارش دریافتی کرده بودند، برگریده شد. انتخاب ۳۲ روز بر حسب صدک بیش از ۹۹ مورد میانگین بارش دریافتی استان در ماه‌های خرداد تا مهرماه بود.

میانگین بارش بی‌موگ‌ها استان در آستانه‌ی صدک ۹۹ درصد از خرداد تا مهرماه برای بازه ۲/۴ میلی‌متر است. بنابراین بطور کلی میانگین بارش در این پژوهش بارشهای سیل آلاینده استان را در دو طبقه بندی جداگانه بارشهای سیل آلاینده سیل مطلوب و سیل مرطوب سال (مهر تا خرداد) و فصل خشک سال (خرداد تا مهر) مورد مطالعه و ارزیابی قرار داده شد.

متغیرهای جوی بایا که در این پژوهش استفاده شدند عبارتند از: ۱- ارتفاع زمین‌سکیل (hgt) بر حسب متر، ۲- فشار تراز دیالپ (MBAR)، ۳- مولفه مداری باد (slp)، ۴- مولفه نصف النهاری باد (sln)، ۵- بر حسب متر بانیویه، ۶- بر حسب متر بانیویه، ۷- بر حسب کیلوگرم بر کیلوگرم داده‌های این متغیرها از تاریخ‌های اخذ شد. چارچوبی که برای مطالعه متغیرهای مورد نظر انتخاب شد، www.esrl.noaa.gov

کریلی بین طول جغرافیایی ۱۰ تا ۱۰۰ درجه‌ی شرقی و عرض جغرافیایی ۰ تا ۷۰ درجه‌ی شمالی را در بر می‌گیرد. دلیل انتخاب کریل یاد شده آن است که نقش تمام سامانه‌های همیندی مقياس مؤثر بر بارش استان کردستان دیده شود. در کریل یاد شده ۱۷۲۳ پایه‌ی قرار می‌گیرد که فاصله‌ی بین هر یا خاتم ۲/۵ در ۰/۲۵ درجه‌ی است. هدف از انتخاب کریل مورد نظر، شناسایی نقش سامانه‌های است که در همچور ایران بر روی رخداد بارش استان کردستان تأثیر گذارند.
شکل (۱) موقعیت مکانی بیشترانهای همدم و توزیع ارتفاع در استان کرستان

یافته‌های پژوهش
الف) فصل مزطبوب
بیشترین رخداد بارش‌های سنگین و سیل‌سای استان کرستان در سالهای ۱۳۷۲ و ۱۳۷۳ رویداد بارشی و (۱۲۲۷ مورد) اتفاق افتاده است (شکل ۳). به لحاظ پراکنش زمانی، بیشتر بارش‌های سیل‌سای استان کرستان در ماه‌های گذار سال، فروردین و آبان مشاهده شده‌اند. حدود ۲/۰ درصد از رخداد بارش‌های سیل‌سای استان کرستان مربوط به ماه فروردین است. به لحاظ شدت، بارش‌های ماه اسفند و آبان بیشترین میزان بارشی را ایجاد کرده‌اند. میانگین شدت بارش رونانه طی ماه اسفند در استان هنگام رخداد بارش‌های این چنینی بیش از میلی‌متر در روز است.
جدول (1) سبادم ماهانه رخادمانه سیل آسی استان کردستان برای آخرین آستانه صدمین
(بررسی درصد و فراگیری)

<table>
<thead>
<tr>
<th>ماه</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد سالانه</td>
<td>412</td>
<td>272</td>
<td>267</td>
<td>261</td>
<td>254</td>
<td>247</td>
<td>237</td>
<td>228</td>
<td>219</td>
<td>210</td>
<td>204</td>
<td>201</td>
</tr>
</tbody>
</table>

نتایج حاصل از تحلیل مولفه‌های مبنا بر روی ماتریس همبستگی فشار تراز دربا در روزهای همزمان با تراز دربا سیل آسی نشان داد که با 12 مولفه می‌توان درصد 93/3 درصد از تغییرات فشار تراز دربا را تبیین نمود. تحلیل خوشه‌ای به روش ادغام وارد بر روی ماتریس‌های 12 مولفه نشان داد که این گونه ارسالی ناشی از رخداد دو الگوی فشار در تراز دربا هستند. در هر دو الگوی نقش سالانه‌ای چرخنده سیوده کاملاً بارز و اشکال است. اگرچه شیب‌های بیش‌تری در دو الگوی مشابهی شده وجود دارد، ولی تفاوت‌های نزدیک بین آنها دیده می‌شود که در زیر به تشریح آنها خواهیم پرداخت.
جدول (۲) درصد تبیین برای مولفه‌های شناسایی‌شده فشار تراز دریا

<table>
<thead>
<tr>
<th>شماره</th>
<th>درصدتیبین</th>
<th>مولفه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۰۲۴</td>
<td>۱۸۵۴</td>
</tr>
<tr>
<td>۲</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۳</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۴</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۵</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۶</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۷</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۸</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۹</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۸۴۳</td>
<td>۱۸۴۳</td>
</tr>
</tbody>
</table>

۱- الگوی کم‌فشار سودان - پرفشار سپه‌ی

همانطور که در شکل ۳ نشان داده شده است در این الگو هسته‌ی کم‌فشار سپه‌ی قوی سودان بصورت دو هسته‌ی بر روی جنوب کشور سودان و چند قرار دارد که فشار مرکزی در آنها ۱۰۰۸ هکتوپاسکال است. همچنین هسته‌ی پرفشار قوی سپه‌ی بر روی مناطق مغولستان و قرقیزستان با فشار مرکزی ۱۳۲ هکتوپاسکال دیده می‌شود. نفوذ زبانهای کم‌فشار سودان در راستای جنوب‌غرب - شمال شرقی به سمت نیمه‌ی غربی ایران و شمال شرقی ایران کم‌شکل است و هسته‌های کم‌فشاری را نیز بر روی کشور عراق و شمال شرق کشور ایران ایجاد کرده است.

و اجرخند سپه‌ی در غیاب کم‌فشار جنوب‌شرقی ایسلند، هم در راستای شمالی - جنوبی و هم در راستای غربی-شرقی کشتار کامل دارد و زبانهای این اجرخند با حکمکت غرب سوی خود، کنار اروپا تا جنوب کشور لیبی را فراگرفته است. همچنین زبانهای از آن در راستای شمال - شرق جنوب‌غربی تا کشور عمان کشیده شده است. شیو فشار ناشی از همجزای و بروز در زبانهای دو سامیانه کم‌فشار سودان و پرفشار سپه‌ی منجر به نابایدی‌های بر روی نیمه‌ی غربی و شمال شرق ایران شده است. جرخنی خشر و جرخنی دیگر زبانهای فیروزه‌آبی در قسمت غربی (شمال آفریقا) و در قسمت غربی (کشور عمان) تقسیم شده است. چنین آراشی از سامانه‌ها منجر به پیمان روابط دریایی گرم (جنوبی) در ۵۰۰ مایلی غرب دریای سرخ و خلیج فارس به سمت ایران خواهد شد.

همه‌میان با رخداد این الگو در نزد میانی جدول ۶۵ هکتوپاسکال) نیز ناوی عمیقی بر روی شرق مدیرانه‌ی دیده می‌شود که محور آن تا شامل کشور سودان و دریای سرخ کشیده شده است. دو پشتی نیز یکی بر روی اروپا تا شمال آفریقا و دیگری بر روی نیمه‌ی شرقی ایران و دریای عمان مشاهده می‌شود که منجر به تقسیم دو جزء و اجرخندی سطح زمین و رزق و نشست هوای سرد ترازهای بالای جنوب بر روی مناطق باد شده است. نیمه‌ی غربی کشور ایران و استان کردستان در شرق ترازهای جنوب، جایی که جرخنی‌های نمایی منته و صعود هوای شدید است، قرار دارد. ماهی‌ها رطوبت دریایی گرم جنوب، شیو فشار و شرایط دگرگیری و نابایدی و صعود هوای در تراز میانی جو هنگام رخداد این الگو منجر به پایان بارندگی سیل آسای است کردستان شده است.
تحلیل همگام بارش‌های سیل آسای استان کردستان

متوسط بارش هنگام رخداد این اگو بر روی پهنه‌ای استان کردستان ۲۶ میلی‌متر در روز و برابر با حدود ۲۳۲۰۰۰ مترمکعب حجم آب است. در ۲۹ خرداد مواردی که بارش سیل آسیابور همراه با روز این اتفاق افتاده است، این اگو حضور دارد. بیشترین رخداد آن در اسفند ماه است (جدول ۲).

![نمودار گرمایشی با داده‌های هواشناسی]({{image_url}})

شکل (۲) اگوی کم‌فشار سودان-پرفشار سیبری و اروپا

اگوی دوم فشار تا درا شبه‌های زیادی به اگوی اول وارد می‌شود. این تفاوت کم‌فشار جنوبی اسلندر به شدت تقویت شده و به سمت عرض‌های جنوبی جابجا شده است. در این راستا، فشار قطبی آن بر روی دریای بازرگان و کاک قرار گرفته و فشار مرکزی آن حدود ۱۰۰۰ هکتوباسکال است. کوکرش و جابجا جنوب‌غربی آن منجر به جابجا پرفشار اروپایی به سمت عرض‌های شمالی (شمال آفریقا) شده است. در این اگو شدت پرفشار سیبری ۶-۷ هکتوباسکال کمتر از اگوی اول است و لیل جابجا کم‌فشار قطبی، کوکرش آن در راستای شمالی و غربی محدود شده و بیشتر در راستای جنوبی و جنوب‌شرقی کشیده شده است. همانطور که در شکل ۲ نشان داده شده است، نفوذ زبان‌هایی که از واقع‌سیر به سمت جنوب شرق کشور گام‌گذاری کرده است، کم‌فشار سودان در این آگو نیز همانند اگوی اول
فعالیت در استان شمالي تا دریای خزر غربی آغاز شده است. هسته‌های از این کم‌فشار بطور سلول‌های جدایانه بر روی کشور عربستان، عراق و شمال شرق کشور شکل گرفته است. همانند الگوی اول در این الگو نیز ادراک شده است که واژگونی ببردن شریط دگ‌فشاری، ناب‌بایدی، واژگونی و تریک‌رطوبت دریاهای گرم جنوبی به سمت ایران و استان کرده باشند. در ترار میانه چون بر روی شرق دریای مدیترانه ناوهای عمیقی شکل گرفته است که محور آن از مرکز ترکیه تا بخش‌های میانی دریای سرخ کشیده شده است. نیمه‌گری کشور و بوزه استان گردشان در نیمه‌شرق ناوهای باد قرار دارند و شریطت ناپایداری هوا را فراهم کرد. این نتیجه تراز میانی بر روی جنوب اروپا و شمال آفریقا و نیمه‌شرق افغانستان نشان می‌دهد که توزیع ترکیه از سطح زمین و نشست هواهای سرد ترازهای بالای جوی روى مناطق باد شده است. محور پیش‌بینی شرقی ناوهای جو نسبت به الگوی اول به سمت شرقی نسبت به جنوب شده است. این الگو در 31 درصد مواردی که استان کرده بارش سپه آسا دیده شده است مشاهده شده است. میانگین بارش دریافتی استان کرده ها 34 میلی‌متر در روز و میانگین حجم آب باران 69943400 متر مکعب آب است. به‌شمارین‌های رخداد این الگو در ماه‌های گذر سال فرورده و آبان است.
ب) فصل خشک

اجمالي تحلیل مولفه‌های مبنا بر روی ماتریس همبستگی فشار تراز در دبی در روزهای همراب با یادگیری سری آسی در فصل خشک استان (فشار از مه‌های) نشان داد که با 11 مولفه می‌توان 92/6 درصد از تغییرات فشار تراز در دبی را در چارچوب مورد بررسی قرار داد. اینکه تغییرات فشار تراز در دبی را تغییرات می‌کند. تحلیل خوشه‌ای به‌روش ادغام وارد بر روی ماتریس نمرات 11 مولفه نشان داد که این گونه بارها ناشی از رخداد یک‌گانه فشار در تراز دبی هستند.

جدول (2) درصد تغییرات نشان‌گر خشکی و فشار تراز در دبی در فصل خشک

<table>
<thead>
<tr>
<th>شماره مولفه</th>
<th>درصد تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

الگوهای فشار تراز در دبی در فصل خشک

الگوی کم‌فصل موسونی و پر‌فرش شرق اروپایی

بی‌احترام به سیل‌آسی فصل خشک استان کردستان نسبت به پارش‌های قابل ملاحظه است که فشار موسمی و پر‌فرش شرق اروپایی بسیاری از تغییرات دقیقه‌ای شمای یک‌گانه را باید در نظر گرفت. این‌گونه مطالعه هرگاه رخداد بارش‌های سیل‌آسی استان در فصل خشک در شکل 5 نشان داده شده است. هم‌نظامی که قابل ملاحظه است که فشار موسمی از جانب جنوبشرقی کشور وارد ایران شده و بصورت نواری در راستای جنوبشرقی- شمال غربی کشور هم‌نظامی است و تا کشور ترکیه نفوذ کرده است. هم‌نظامی بر روی شرقي اروپا و شمال دریای خزر یک پر‌فرش و یا چهار نفر قرار گرفته است که توسط پیش‌بینی قوی تراز منابع جوی قوی باید می‌شود. هوا سرد و چهار نفر قرار یک‌گانه از یک‌گانه تا مرکز ایران نفوذ کرده و سرعت دفرشاتی را بر روی استان کردستان و غرب ایران ایجاد کرده و منجر به ناپایداری و صعود هوا در مناطقی می‌شود. بر روی غرب کشور شیوی فشار به حدود ۲۵تا ۲۰ هکتوسپاسکال می‌رسد. میانگین روزانه پارش استان
کردهستان هنگام رخداد این الگو حدود 4/6 میلی متر است. در ترزا میانی جو ب روی شرق اروپا یک هسته بر افتراق یا هسته ۴75۵ زنویانسیل متر دیده می‌شود و بر روی غرب ایران یک ناحه دیده می‌شود که معمولاً در میان بیشتری شیوی فشار به اوج رسانده و تقویت می‌کند. استان کردهستان در شرق ناحه قرار دارد و از جهت جویانه تبدیل به دینامیکی شده و شرایط ناپایداری چو کاملاً فراهم است. در جنوب ایران شرایط برعکس است. در ترزا میانی یک پشتی بسیار قوی دیده می‌شود که ماه یا بانده دینامیکی آنرژ است که از جنوب غرب ایران ب روی جنوب ایران کشیده است و بوجود کم‌فشار جغرافیایی بسیار قوی در سطح زمین ب روی منطقه، مانع از صعود هوا در بخش‌های جنوبی ایران شده است.

(5) الگوی ترکیبی فشار ترزا دریا هنگام رخداد بارش‌های سیل اسای استان کردهستان در فصل خشک سال

همگراپی شار رطوبت

یکی از شرایط رخداد بارش علاوه بر عوامل دینامیکی و صعود مهابی رطوبت در منطقه است. برای رخداد بارش سنگین و سیل آسیب رطوبت مهم‌تر از عوامل صعود است (علیچالی، ۱۳۷۲). میان رطوبت ممکن است محدود باشد و یا از اطراف به سمت منطقه انتقال پیدا کرده باشد. اگر مقدار زیادی از رطوبت جوی ب روی حجم کوهیکی از جو همگرا و متمرکز شود،
تحلیل همگرایی شار رطوبت در روزهای نمایندگی هر الگو گردشی

برای اگاهی در مورد منبع رطوبت بارش‌های سیل استان کرمان و نحوه همگرایی شار رطوبت در ترازهای مختلف، در سال‌های مختلف مورد پژوهش، از هر کدام از الگوها یک روز به عنوان نماینده که بیشترین همیستگی را با سایر عضا داشته برگردیده شد (جدول ۵). برای الگوی اول در فصل مرتبط روز ۱۸/۲۶/۹۲۷۵ به عنوان نماینده که بیشترین همیستگی را با سایر عضا داشته بود (۵۰ درصد) به عنوان روز نماینده انتخاب شد.

برای فصل خشک نیز روز ۸ ماه خرداد سال ۱۳۷۴ به عنوان روز نماینده انتخاب شده که با سایر روزها ۴۰ درصد همیستگی نشان می‌دهد (جدول ۴).

جدول (۵) روزهای نماینده هر الگو در فصل مرتبط

<table>
<thead>
<tr>
<th>الگوی گردشی</th>
<th>همیستگی روتوگرافی</th>
<th>همیستگی درونگرافی</th>
<th>زمان نمایندگی</th>
<th>تاریخ نمایندگی</th>
<th>روز نمایندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوم</td>
<td>۶۰</td>
<td>۵۰</td>
<td>۱۲/۱۶/۱۹۹۱</td>
<td>۹/۹/۱۹۹۴</td>
<td>۱۷/۱۹/۱۹۹۴</td>
</tr>
<tr>
<td>اول</td>
<td>۷۶</td>
<td>۶۶</td>
<td>۱۳/۲۶/۱۹۹۱</td>
<td>۹/۹/۱۹۹۴</td>
<td>۱۳/۲۶/۱۹۹۱</td>
</tr>
</tbody>
</table>

جدول (۶) روزهای نماینده هر الگو در فصل خشک

<table>
<thead>
<tr>
<th>الگوی گردشی</th>
<th>همیستگی روتوگرافی</th>
<th>همیستگی درونگرافی</th>
<th>زمان نمایندگی</th>
<th>تاریخ نمایندگی</th>
<th>روز نمایندگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اول</td>
<td>۷۰</td>
<td>۶۰</td>
<td>۱۰/۲۶/۱۹۹۴</td>
<td>۹/۹/۱۹۹۴</td>
<td>۱۰/۲۶/۱۹۹۴</td>
</tr>
</tbody>
</table>

الف) فصل مرتبط

به دلیل حجم زیاد نهادهای شار همگرایی رطوبت در ترازهای ۱۰۰۰، ۱۰۱۰، ۱۰۲۵، ۱۰۵۰ و ۱۰۷۵ هکتار بالا که در ۴ دیده‌بانی ۶ ساعتی بارش ۱۰۷ روز برگزیده در فصل مرتبط بوده‌اند.

1- Ferraris
برای روزهای نامبناه، هر کدام از الگوها میزان شار همگرا رطوبت را با توجه به مقدار همگرا و حجم بر کیلوگرم در ثانیه است. مناطقی که در اینجا رطوبت همگرا شده است، بیانگر چاله‌های هستند که جریان‌های جوی و وزش با دادن رطوبت به اطراف به سمت منطقه آوردند و در اینجا متمرکز و همگرا کرده‌اند. نتایج نشان داد که بیشترین شار رطوبت می‌تواند وارد الگو در نتیجه‌های زیری گردد (1000 و 850 هکتوپاسکال) با چهار جنوبی - شمالی صورت گرفته است. با چرخش پادسان‌گرد سامانه واژن‌هایی در روزهای ممکن که زبان‌های سبیری است نشان می‌دهد در تریزبی، رطوبت در باش‌های گرم جنوب به سمت نیم‌های غربی کشور و بیشتر به روی استان کردستان دارد. در هر دو الگو استثنایی همگرا رطوبت به روزهای استثنایی قرار دارد. در نتیجه‌های زیرین جوی در رطوبتی عمان، عرب، سرخ، خلیج فارس و مدیترانه منبع رطوبت باش‌های سیل آسیایی است. هنگامی که توسط هر یکی از الگوها به سمت نیم‌های غربی تغییر یافته باشد، در منطقه ورزش‌های دشتی، در باربی عمان و عرب، سهم بیشتری در تأمین رطوبتی باش‌های دارد. در نتیجه‌های بالایی در رطوبتی همگرا رطوبتی به سمت نیم‌های غربی کشور می‌تواند منبع رطوبتی به حساب می‌آید و از جوی اکنون با رطوبتی یکی از این دسته‌ها گردد. با سرعت بیش از 10 متر بر ثانیه با جهت غربی - شرقی و جنوب غربی - شمال شرقي رطوبت در باش‌های بالایی بر روی این منطقه مورد پژوهش و درچنگ دیده می‌شود. در پایین‌ترین رطوبتی در باش‌های بالایی، بین این دسته‌ها، شار رطوبتی در نتیجه‌های زیری، جوی است که به کمک یکدیگر به بیان‌های سامانه‌های واژن‌هایی منطقه می‌رسد. در نتیجه‌های شرقی، ایران نفوذ کرده و بر روی منطقه همگرا شده است (شکل 7).
شکل (۶) شاره‌مگرایی رطوبت در کوه‌های اول (راست) و کوه‌های دوم (چپ) بر حسب
$10^{-5} \frac{g}{kg \cdot s^{-1}}$ در تراژه‌های زیرین جو به ترتیب ۲۰۰ و ۸۵ هکتوباسکال.
نتیجه تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷، تابستان ۹۴

شکل (۷) شاره‌سازی رطوبت در گوی اول (راست) و گوی دوم (چپ) بر حسب $10^{-4} \text{g} \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ در تراز‌های بالایی جو به ترتیب ۷۰۰ و ۵۰۰ هکتوپاسکال.
شکل 8 نفوذی همگرایی شار رطوبت در روز نمایندگی الگوی فصل خشک سال(خرداد تا مهرماه) را نشان می‌دهد. در ترازوی زیرین جو کامل‌آ شکل است که جریان‌های شمالی مربوط به ویانرختن روز شمال در بیای خزر و طرف‌های مرتفع روز در بیای خزر را به سمت استان کردستان شار شکر بطوری که بر روی استان کردستان شار همگرایی رطوبت به 21 تا 24 گرم بر کیلوگرم در ناحیه در نزدیک 100 هکتوباسکال رسیده است. در نزدیک 1000، 1250، و 1500 هکتوباسکال و حتی 2 هکتوباسکال کاملاً نمایان است که منبع رطوبت اینگونه بارشی در فصل خشک سال، در بیای خزر است. بیشترین شار همگرایی رطوبت مربوط به نزدیک 1000 هکتوباسکال است. اینگونه بارشی از جنوب شرق استان شروع شده و به سمت غرب استان در حرکت می‌پیوندد. در نزدیک 600 و 500 هکتوباسکال بازهم منابع رطوبت در بیای خزر است و لی رطوبت بر روی منطقه انجام نشده بلکه در بخش‌های شرقی شریان‌ها همگرایی انجام شده است.
نتیجه‌گیری
هدف این پژوهش تحلیل هم‌وکاری سیل‌سازی استان کرکنزمان طی بازه زمانی ۱۱ تا ۲۲/۳۹ (۱/۱۳۹۸ تا ۱/۱۳۹۹) بود. با توجه به هدف پژوهش از روی این محدودیت به گردش استفاده شد. در ابتدا به کمک دو آستانه‌گرفت‌گر و شدت (صدک) و ۱۰۷ روز از فراگیرتین و شدیدترین پیشرفت‌ها انتخاب شد. اینگونه پیشرفت‌ها در فصل مرطوب سال (از هر تا خردادماه) مشاهده می‌شوند که شدت‌گیری‌ترین و ابرسرگین‌ترین باره‌های سیل‌سازی استان کرکنزمان در فصل مرطوب سال رخندمود دارند. فشار تراز در بای ۱۰۷ روز باید به ۲/۵ در ۱/۲ در کرنش ۱۰۰ درجه طولی شود و بر ۲۰ درجهی شامالی از مرکز ملی اطلاعات و قوی نشان‌های ایلادی محدودیت امکان استخراج شد و بر روي ماتریس هم‌وارد هم‌وارد پیشرفت در ۹۳ درصد از تغييرات فشار تراز دريا را نسبت به كردنده، شناسايي شد. برای شناسايي الهام‌های هم‌دارنده بر روی نمرات مولفه‌ها تحلیل خوشه‌ای به روش ادامه وارد آنگام شد. افتته- های این پژوهش نشان داده که در فصل مرطوب سال دو الگوی هم‌دارند فشار تراز دريا هنگام رخنداد پیشرفت‌های سیل‌سازی استان کرکنزمان مشاهده می‌شود: الگوی کم‌فشار سودان- برکنان سیری و الگوی کم‌فشار سودان و اسیندن- برکنان سیری و اینویا. متوسط پیشرفت هنگام رخنداد الگوی اول بر روی پهن‌تر استان کرکنزمان ۲۴ میلی‌متر در روز و برابر با حدود ۷۳۷۲۷۸۰۰ مترمکعب حجم آب است. در ۲۹ درصد مواردی که پیشرفت سیل‌سازی ۵۰ درصد نسبت به استان اتفاق افتاده است، این الگو حضور دارد. بیشترین رخنداد آن در اسفند ماه است. الگوی دوم در ۷۱ درصد
محلی‌های که استان کردستان بارش سیل‌آسا دریافت کرده است، میانگین بارش دریافتی استان کردستان طی رخداد این اگو 24/8 میلی‌متر در روز و معدل حجم آب برای 69943400 متر مکعب آب است. بیشترین جریان این اگو در ماه‌های ژانویه سال فروردین و آبان است. در هر دو اگو نقص سامانه کمی‌فشار سودان کامل آشکار است. سامانه‌های واژگونی سیبری نیز نشان مبنا در گرداگرد فشار و تغذیه ریموت دریاهای گرم جنوبی به سمت منطقه مورد پژوهش دارد. تقویت کمی‌فشار جنب‌قبطی و گسترش آن به سمت جنوب و شرق نشان مبنا در جابجایی واژگونی سیبری و واژگونی اروپا به سمت جنوب و راندن زیان‌های آنها به سمت شرق ایران (سیبری) و شمال آفریقا (روپایی) دارد. اندک‌گردن و چیدمان سامانه‌های گرداگردی است که قطب‌های سامانه کمی‌فشار سودانی توسط چرخ‌های واژگونی سامانه سیبری و واژگونی اروپایی تقویت می‌شود و منجر به تغذیه رطوبتی و شار رطوبت آن و ایجاد شرایط دگرشماری در منطقه می‌شود. در ترک زمانی گروه (500 هکتوباسکال) نیز ناهوی عمیق مستقر بر روی شرق دویای مدیریت‌ها و ۱۰۱،۲۲۵ و ۸۵۰ هکتوباسکال (انفجار افتاده‌است). ممنوع رطوبتی در ترکبیه کردن جو دریاهای عربی. سرخ، عمان، خلیج فارس و مدیریت‌های است. نشان دریای مدیریت‌ها نسبت به دریاهای گرم جنوبی کمتر است و در بین دریاهای جنوب، دریای عرب سیمی‌پیش‌تری در تغذیه‌های رطوبتی بارش‌های سنگین استان دارد. در ترکبیه بالای چوب ۲۰۰،۰۰۰ و ۵۰۰ هکتوباسکال (میزان شار همگرا کمتر است و بر روی جنوب دریای خزر و شرق استان کردستان همگرا شده است. در ترکبیه بالای چوب ممنوع رطوبتی بارش‌های دریای عرب و مدیریت‌ها است و نشان دریاهای جنوبی کمتر است.

منابع و مأخذ
1. اشجعی باشکند، محمد (۱۳۷۹). بررسی و ارائه مدل‌های سیستم‌یکی بارش‌های سنگین در شمال غرب ایران. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، دانشکده منابع طبیعی، گروه هواشناسی.
 british scientific research papers on geology and paleontology. it is a collection of papers written in farsi. the text contains research articles on various topics related to geology and paleontology. the text is written in farsi and is a part of a larger collection of papers. the text is written in a formal tone and is intended for an academic audience. the text is well-structured and uses technical terminology. the text is written in a clear and concise manner, making it easy to understand. the text is a valuable resource for students and researchers in the field of geology and paleontology.
تحلیل همدید بارش‌های سیل‌آسای استان کردستان

12. غزاران (1377). تحلیل وارونگی‌های همدید بارش در ایران، ابتدا دوره دکتری اقیم، شناسی، تهران، گروه چرایدانشگاه تربیت مدرس.

13. ادبیات، قاسم و نبیک، مصوعه و نبیک، جوادی، شیما (1388). تحلیل سیونیتیک بارش‌های سیل‌آسای در غرب کشور بخش‌های موردی: بارش دوره 7-14 مارس 1350، 16 تا 24 اسفند 1385، جغرافیای طبیعی، شماره 4-ص. 1-12.

14. غزاران (1379). تحلیل کوی سیونیتیک بارش 28 مهرماه 1382 استان‌های گیلان و مازندران، پژوهش‌های جغرافیایی، شماره 6، صص 46-161.

15. ادبیات، بیانیه، بهلول و خر، محمود و اسماعیل نواز، مرتبی (1386). تحلیل سیونیتیک بارش‌های سیل‌آسای در 800/16 در مناطق جنوبی ایران، مجله پژوهش‌های اقیم‌شناسی، شماره 3-ص. 1-12.

16. غزاران، بهلول (1377). مکانیزم‌های صعود بارندگی در ایران، مجله دانشگاه ادبیات و علوم انسانی دانشگاه تربیت معلم شماره 1، صص 1-11-5.

17. ادبیات، بهلول (1381). اقیم‌شناسی سیونیتیک، انتشارات سمت، تهران.

18. غزاران، پرستو و مشکوی، امیر حسین و آزادی، مجید و مهره فراهانی، مجید و رحیم زاده، فاطمه (1386). بررسی همدیدی بارش در شمال غرب ایران- مطالعه موردی بارش‌های ابتدای اسفند، مجله پژوهش‌های اقیم‌شناسی، شماره 3-ص. 43-12.

20. جبایری‌نیا، غلام‌رضا و فینه، عباس و زرین، آذر (1392). شناسایی‌های همدید بارش‌های سیل‌آسای در سواحل جنوبی دریای خزر، مجله جغرافیا و برنامه ریزی محیطی، شماره 42-ص. 23-40.

21. کاشفی‌نیا، هادی، محترمی و حاجیی، حسین (1389). تحلیل سیونیتیک و ترومودینامیک واقعه سیل استان‌های 1376-1377 در جهت‌های آبی کارون، مجله پژوهش‌های دانشگاه ادبیات و علوم انسانی دانشگاه اصفهان، شماره 26-ص. 18-1.

22. کریمی، هادی، مصطفی (1386). تحلیل متابقه‌های وابستگی بارش‌های ایران، پایان تامه دکتری جغرافیای طبیعی، دانشگاه تربیت مدرس.
تشریح تحقیقات کاربردی علوم جغرافیایی سال پانزدهم، شماره ۳۷، تابستان ۹۴

۲۳. کوهانیان افضل، فرشاد و موسوی، جمشید و صدفی، حسین و پرهمت، چهانگیر (۱۳۸۷). پیش‌بینی زمان واقعی سیل با استفاده از شبکه‌های عصبی تکیه‌گیری، مجله هیدرولیک، شماره ۱، صص ۱-۱۸.

۲۴. گندمک، امیر (۱۳۸۷). بررسی هم‌داد بارش‌های شدید در نواحی جنوبی استان بوشهر، فصلنامه جغرافیایی طبیعی، شماره ۸، صص ۱۷-۳۶.

۲۵. لشکری، حسن (۱۳۷۵). آگوی سیتویتیکی بارش‌های شدید جنوب و جنوب غرب ایران، پایان نامه دکتری جغرافیای طبیعی، دانشگاه تربیت مدرس.

۲۶. لشکری، حسن (۱۳۸۱). مسیریابی سامانه‌ها کم فشار سودانی و رودی به ایران، فصلنامه پژوهش‌های جغرافیایی شماره ۶۴، صص ۱-۱۸.

۲۷. محمدی، بختیار و مسعودیان، سید ابوالفضل (۱۳۸۳). تحلیل هم‌داد بارش‌های سنتگین ایران، نمودنی موردنی، پارش نوامبر سال ۱۹۹۴. جغرافیا و توسه، شماره ۸، صص ۴۷-۰۷.

۲۸. محمدی، حسین و فتحی، ابراهیم و شمسی‌پور، علی‌اکبر و اکبری، مریم (۱۳۹۱). تحلیل سامانه‌های سودانی و رخداد بارش‌های سنتگین در جنوب غرب ایران، تشریح تحقیقات کاربردی علوم جغرافیایی، شماره ۱۴، صص ۷-۲۴.

۲۹. مرادی، حسین (۱۳۸۵). بازی سیتی‌سیلبی بررسی کوههای سینوئیتیک در شمال شرق ایران، فصلنامه پژوهش‌های جغرافیایی، شماره ۷۵، صص ۴۷-۰۷.

۳۰. مسعودیان، سید ابوالفضل (۱۳۸۷). شناسایی شرایط هم‌داده بارش‌های سنتگین ایران، سومین کنفرانس مدیریت منابع آب ایران، ۲۲ مهر ۱۳۸۷، دانشگاه تبریز، دانشکده مهندسی عمران.

۳۱. شناسایی کوه‌های گردشی پیدا کرده در شمال سیلاب‌های بزرگ در کارون، مجله جغرافیا و توسه، پارش و تابستان، صص ۴۸-۱۶۱.

۳۲. مفیدی، عباس (۱۳۸۳). اقلیم‌شناسی سیتویتیکی بارش‌های سیلاب‌های جدا با نشان دریای سرخ در خاورمیانه، فصلنامه تحقیقات جغرافیایی، شماره ۷۵، صص ۹۳-۱۷۱.

Liasat, M.C., Barriendos, M., Barrera, A., Rigo, T. (2005). Floods in Catalonia (NE Spain) since the 14th century. Climatological and
meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313, 32–47.