[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Search published articles ::
Showing 1 results for Prediction

Seyed Kamal Sadeghi, Seyed Mehdi Mousavian,
Volume 5, Issue 20 (9-2015)
Abstract

As one of the important energy forms, natural gas consumption has an upward trend in recent years. Therefore management and planning for provision of it requires prediction of the future consumption. But many of prediction procedures are inherently stochastic therefore it is important to have better knowledge about the robustness of prediction procedures. This paper compares robustness of two prediction procedures Artificial Neural Networks as a nonlinear and ARIMA as a linear model. using resampling method to predict the monthly consumption of natural gas in the household sector. Data spans from 2001-4 to 2012-3, to train the networks, we used genetic algorithms and Particle Swarming Optimization then results were compared using 10-fold method. According to the results, the particle swarm optimization (PSO) outperforms the genetic algorithm. Then we used data from 2001-4 to 2010-3, with resampling by 2000 to predict the  natural gas consumption for the 2001 -4 to 2012-3 and to form critical values. Results show that prediction by a mixed method using ANN and PSO is more robust than ARIMA method.



Page 1 from 1     

فصلنامه تحقیقات مدلسازی اقتصادی Journal of Economic Modeling Research
Persian site map - English site map - Created in 0.07 seconds with 25 queries by YEKTAWEB 4665