دوره 13، شماره 47 - ( 3-1401 )                   سال13 شماره 47 صفحات 165-115 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemi Y, Khandan A, Akbarpour-Roshan N. Predicting the Purchase of Self-Employed Pension Schemes in the Iranian Social Security Organization Using Decision Tree and Random Forest Classification Algorithms. jemr 2022; 13 (47) :115-165
URL: http://jemr.khu.ac.ir/article-1-2280-fa.html
قاسمی یاسین، خندان عباس، اکبرپور روشن نرگس. پیش‌بینی خرید بیمه‌نامه حرف و مشاغل آزاد سازمان تامین اجتماعی با استفاده از الگوریتم طبقه‌بندی درخت تصمیم و جنگل تصادفی. تحقیقات مدلسازی اقتصادی. 1401; 13 (47) :115-165

URL: http://jemr.khu.ac.ir/article-1-2280-fa.html


1- دانشگاه خوارزمی
2- دانشگاه خوارزمی ، khandan.abbas@khu.ac.ir
3- پژوهشکده اقتصاد، پژوهشگاه علوم انسانی و مطالعات فرهنگی
چکیده:   (2638 مشاهده)
پوشش بیمه سازمان تامین اجتماعی برای حرف و مشاغل آزاد به صورت اختیاری در سه نرخ 12، 14 و 18 درصد ارائه می‌شود اما نگاه به آمار نشان می‌دهد که تقاضای این بیمه‌نامه‌ها بسیار پایین است. این پژوهش با استفاده از داده‌کاوی و با به‌کارگیری دو الگوریتم یادگیری ماشین یعنی درخت تصمیم و جنگل تصادفی به بررسی مشخصه‌های خریداران این نوع بیمه‌نامه‌ها پرداخته و با ارائه یک مدل طبقه‌بندی، رفتار آن‌ها را پیش‌بینی می‌کند تا از این طریق به سازمان تأمین اجتماعی در جهت بهبود مدیریت ارتباط با مشتری کمک کند. برای این منظور، از اطلاعات 1286174 نفر از خریداران انواع بیمه‌نامه‌های حرف و مشاغل آزاد سال 1399 استفاده شد که مشخصه‌های سن، جنسیت، متوسط درآمد ماهانه، میزان سابقه کار و نوع بیمه‌نامه خریداری شده را در بر می‌گیرد. نتایج به دست آمده نشان می‌دهند که زنان به طور عمده متقاضی بیمه‌نامه با نرخ 12 درصد هستند در حالی که مردان به دلیل بر عهده داشتن بار تکفل خانواده عمدتاً تمایل به خرید بیمه‌نامه‌های با نرخ 14 و 18 درصدی دارند. همچنین، در مردان با افزایش سن، درآمد و سابقه، تقاضای بیمه‌های با نرخ 14 و 18 درصد افزایش می‌یابد، اما چنین روندهایی برای زنان وجود ندارد. طبق نتایج به‌دست آمده متغیرهای میزان سابقه کار و پس از آن جنسیت در انتخاب نوع بیمه‌نامه تعیین‌کننده هستند، به گونه‌ای که طبق پیش‌بینی مدل افراد با سابقه کار کمتر از 5/4 سال متقاضیان قطعی بیمه‌نامه 12 درصدی شناخته شده‌اند. با توجه به نتایج و انگیزه پایین زنان و جوانان برای انتخاب بیمه‌های با خدمات گسترده‌تر، سازمان تأمین اجتماعی می-تواند ازطریق ارائه مشوق‌ها یا خدمات کوتاه‌مدت، جذابیت این نوع بیمه‌نامه با خدمات گسترده‌تر را در بین این گروه خاص افزایش دهد.
متن کامل [PDF 812 kb]   (1259 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: بخش عمومی
دریافت: 1401/8/24 | پذیرش: 1402/1/26 | انتشار: 1402/4/11

فهرست منابع
1. Abdi, A. (2006). Examining the issues and problems of insured persons and the free and optional jobs in interaction with the social security organization. Social Security Quarterly, 8(1). 255-282. (In Persian)
2. Abdi, F., Khalili-Damghani, K., & Abolmakarem, S. (2017). Solving customer insurance coverage sales plan problem using a multi-stage data mining approach. Kybernetes.1, 2-19. [DOI:10.1108/K-07-2017-0244]
3. Abdul-Rahman, S., Arifin, N. F. K., Hanafiah, M., & Mutalib, S. (2021). Customer Segmentation and Profiling for Life Insurance using K-Modes Clustering and Decision Tree Classifier. International Journal of Advanced Computer Science and Applications (IJACSA), 12(9) [DOI:10.14569/IJACSA.2021.0120950]
4. Azzone, M.; Barucci, E.; Mancayo, G.G.; Marazzina, D. (2022). A Machine Learning Model for Lapse Prediction in Life Insurance Contracts. Expert Systems with Applications, 191. [DOI:10.1016/j.eswa.2021.116261]
5. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS inc, 9,13.
6. Chen, I. J., & Popovich, K. (2003). Understanding customer relationship management (CRM): People, process and technology. Business process management journal. 672-688. [DOI:10.1108/14637150310496758]
7. Chen, Y., & Hu, L. (2005). Study on data mining application in CRM system based on insurance trade. In Proceedings of the 7th international conference on Electronic commerce. 839-841. [DOI:10.1145/1089551.1089715]
8. Hurwitz, J., & Kirsch, D. (2018). Machine learning for dummies. IBM Limited Edition, 75. [DOI:10.1201/9780429196645-6]
9. Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications,37(7), 5259-5264. [DOI:10.1016/j.eswa.2009.12.070]
10. Kracklauer, A. H., Mills, D. Q., & Seifert, D. (2004). Customer management as the origin of collaborative customer relationship management. In Collaborative Customer Relationship Management (pp.3-6). Springer, Berlin, Heidelberg [DOI:10.1007/978-3-540-24710-4_1]
11. Khalili-Damghani, K., Abdi, F., & Abolmakarem, S. (2019). Solving customer insurance coverage recommendation problem using a two-stage clustering-classification model. International Journal of Management Science and Engineering Management, 14(1), 9-19. [DOI:10.1080/17509653.2018.1467801]
12. Kong, H.; Yun, W.; Joo, W.; Kim, J.H.; Kim, K.K.; Moon, I.C.; & Kim, W.C. (2022). Constructing a personalized recommender system for life insurance products with machine-learning techniques. Intelligent Systems in Accounting, Finance and Management, 29 (4). 242-253. [DOI:10.1002/isaf.1523]
13. Maimon, O. Z., & Rokach, L. (2014). Data mining with decision trees: theory and applications (Vol. 81). World scientific
14. Mau, S., Pletikosa, I., & Wagner, J. (2018). Forecasting the next likely purchase events of insurance customers: A case study on the value of data-rich multichannel environments. International Journal of Bank Marketing, 1123-1144. [DOI:10.1108/IJBM-11-2016-0180]
15. Mollamohammadi, R., & Mostofi, M.R. (2014). The Factors Affecting the Success of the Social Security Organization in Paying Retirement Pension to Those Insured by Qom'First Branch of Social Security Organization. Organizational Culture Management, 12(2), 299-323. (In Persian)
16. Motdin, N.; Nazarian, R.; Daman-Ksheideh, M., & Seifipour, R. (2021). Designing a Comparative Model of Bank Credit Risk Using Neural Network Models, Survival Probability Function and Support Vector Machine. Journal of Economic Modeling Research, 11 (45), 199-230. (In Persian) [DOI:10.52547/jemr.12.45.199]
17. Motafakkerazad, M.A.; & Ghafarnejad Mehraban, A. (2011). Intelligent Modeling of Asymmetric Effects of Monetary Shocks on Output in Iran(Neural Network Application). Journal of Economic Modeling Research, 2 (4), 83-102. (In Persian)
18. Najafi, A. (2019). Predictability of loyalty and separation of self-insurance Persons of Social Security Organization based on data mining method. Social Security Quarterly, 15(1). 88-109. (In Persian)
19. Ngai, E. W., Xiu, L., & Chau, D. C. (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications,36(2), 2592-2602. [DOI:10.1016/j.eswa.2008.02.021]
20. Parmah, S.; Mardomdar, S., & Heidari, A. (2020). Macroeconomic Variables and Demand for Self-employment Insurance in the Social Security Organization. Social Security Quarterly, 16(1). 41-59. (In Persian)
21. Rahman, S., Arefin, K. Z., Masud, S., Sultana, S., & Rahman, R. M. (2017, April). Analyzing Life Insurance Data with Different Classification Techniques for Customers' Behavior Analysis. In Asian Conference on Intelligent Information and Database Systems.15-25. [DOI:10.1007/978-3-319-56660-3_2]
22. Rygielski, C., Wang, J. C., & Yen, D. C. (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502. [DOI:10.1016/S0160-791X(02)00038-6]
23. Severino, Matheus Kempa, and Yaohao Peng. "Machine learning algorithms for fraud prediction in property insurance: Empirical evidence using real-world microdata." Machine Learning with Applications 5 (2021): 100074. [DOI:10.1016/j.mlwa.2021.100074]
24. Shokohyar, S.; Rezaeian, A., & Boroufar, A. (2017). Identifying the customer behavior model in life insurance Sector using data mining. Management Research in Iran, 20(4). 65-94. (In Persian)
25. Sullivan, W. (2017). Machine Learning For Beginners Guide Algorithms: Supervised & Unsupervsied Learning. Decision Tree & Random Forest Introduction. Healthy Pragmatic Solutions Inc
26. Tanha, J., Van Someren, M., & Afsarmanesh, H. (2017). Semi-supervised self-training for decision tree classifiers. International Journal of Machine Learning and Cybernetics, 8(1), 355-370. [DOI:10.1007/s13042-015-0328-7]
27. Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. 29-40.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه تحقیقات مدلسازی اقتصادی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Economic Modeling Research

Designed & Developed by : Yektaweb