Search published articles


Showing 4 results for Assessment

Somaieh Akbar, H Ranjbar, S Kariminasab, M Abdolmaleki,
Volume 7, Issue 1 (8-2013)
Abstract

The study area is located in Jiroft district, Iran, and is a part of Sahand-Bazman volcanic zone. There are various landslide factors and the importance of each factor are identified qualitatively, based on previous studies and regional specifications. Three landslides were recognized in the study area using direct method (field work) and aerial photographs interpretation. One of these landslides is located in the vicinity of Mohammad Abad of Maskoon Village. The aim of this study is landslide hazard mapping using two integration methods that includes Fuzzy Logic and Hybrid Fuzzy-Weight of Evidence (Hybrid F-W of E). The obtained results of maps from both methods, show a good agreement especially in introducing  high hazard regions. The hybrid method is based on the occurred landslide points and is more rigorous, so hazard regions delineated by this method occupy smaller areas than the areas introduced by fuzzy model. Therefore, hazard maps resulted from Hybrid and Fuzzy methods, can be considered as minimum and maximum limits of landslide hazard in the area, respectively. 
Sahar Rezaian, Seyed Ali Jozi, Sadaf Ataee,
Volume 10, Issue 2 (11-2016)
Abstract

Objective of the present research is to identify, analyze, and assess risk of Paveroud Dam during construction phase. Following collection and analysis of the information related to environmental conditions of the area of study and technical specifications of dam construction, a list of probable risk factors was prepared in the form of a questionnaire, and for verification, the questionnaires were provided to a group of specialists consisting of elites and professors specialized at the disciplines relevant to environment and civil engineering. Number of questionnaires was determined based on Cochran’s formula. In the first step, the expert group in the research was asked to score in Likert scale format so as to analyze the acquired responses and the risks present in the region. Having analyzed the scores using the findings of PHA method, TOPSIS technique was applied to prioritize the identified risks of Paveroud Dam. The results indicated that erosion had the highest priority among 36 risk factors. After prioritization among the risk factors, risk was also assessed using RAM-D technique in which “impact on Sorkhabad Protected Zone with 9 scores, “erosion” with 6 scores, and “work at high elevation” with 3 scores were recognized as three major risks of Paveroud Dam. In order to mitigate the effects of dam risks during construction phase, environmental management planning is crucial, and for this purpose, risk mitigation choices were recommended at the end aimed at coping with the identified risks.


Alireza Rastikerdar,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Solid waste is one of the unavoidable products of every society that necessitates the establishment of municipal solid waste management system. Because of variability in quantity and composition of municipal solid wastes, several management scenarios are considered. Assessing the environmental impacts of the life cycle of these scenarios will have a significant role in reducing and resolving urban service management problems. The aim of this study was to compare different scenarios of municipal solid waste management in Sirjan city using life cycle assessment (LCA) approach. LCA methodology is used to evaluate the environmental performance of the waste management of Sirjan for different scenarios, according to the ISO standards 14040 series 2006.
Material and methods
After identifying the quantitative and qualitative characteristics of the produced wastes within the scope of the study, the quadratic steps of the LCA method are followed in relation to each of the scenarios. The stages of life cycle assessment in the present research are as follows:
 1. Determining goals and scope: Our goal is to compare environmental impacts of scenarios that include different methods of disposal. The boundaries of the study start from the collection of municipal solid wastes from the transfer station and ends with the final disposal of waste (Figure 1)

Figure 1. System boundary
Four scenarios have been investigated and evaluated in the environmental field (Table 1).
Table 1. Disposal solid waste scenarios
Scenario Compost (%) Recycle (%) Incineration (%) Landfill (%)
1
2
3
4
0
68.4
17.1
0
0
19.2
15
19.2
0
0
55.9
69.8
100
12.4
12
11
2. Collecting data and life cycle inventory (LCI): Various tools have been developed for LCI, one of which is the IWM-2 model. The IWM-2 model is one of the lifecycle assessment models that can be used to define different scenarios and then to compare the environmental impacts of each scenario. At this stage, the data from physical analysis, the amount of waste produced, the stages of separation at source, collection, transportation and final disposal, were collected and analyzed and the amount of contamination caused by each of the scenarios and energy consumption were determined.
3. Life cycle impacts assessment (LCIA): Assessing the impacts of the life cycle is a step of life cycle assessment, aimed at understanding and assessing the magnitude and significance of the potential environmental impacts of a product or service. At this step, the various information and data obtained at the LCI stage are reduced to less indicators and impact categories in order to facilitate the interpretation of this information and provide clearer outcomes to decision makers and managers. In this step, input data are allocated to the five impact categories of energy consumption, greenhouse gases, acid gases, photochemical gases and toxic emissions.
4. Interpretation of results: At this stage, the results of the LCI and LCIA will be evaluated so that the stages or points which have the greatest and least harmful impacts on the environment in the production and consumption of the product have been determined. Finally, conclusions and solutions are explained.
Results and discussion
Results of the model were allocated to five categories consisting of energy consumption, greenhouse gases, acid gases, photochemical gases and toxic emissions. In every category, the ecological index as a quantitative measure to compare scenarios was calculated.
Conclusion
In this study, the life cycle assessment approach was used as a decision tool for choosing the appropriate waste disposal scenario in Sirjan city. The second scenario (68.4% compost, 19.2% recycling, 12.4% landfill) was selected as the preferred option for municipal waste disposal in Sirjan city. Also the results of this study show that in an integrated municipal waste management system, increasing the rate of separation and recycling will significantly reduce the release of environmental pollutants../files/site1/files/142/5.pdf
 
Vahid Shirgholami, Mahdi Khodaparat, Abolghasem Moezi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Excavation in urban areas occasionally is accompanied by the improper performance of the support system for even small deformations. In this regard, deformation control design based on force-based approaches provides a more realistic reprehensive of excavation performance. Top-down deep excavation techniques are among the modern excavation stabilization methods in urban areas. In this method, unlike the conventional methods, it is possible to perform the excavation and construction operations simultaneously. The present study aims to investigate excavation stabilization using the main structure through the top-down approach. For this purpose, field and numerical evaluations of the stabilized project were conducted based on the top-down approach in the downtown of Qom city, Iran. This research reports the information obtained through monitoring and modeling using the finite element ABAQUS software, predicting the occurred deformations until the end of excavation operations using the calibrated model, and offering an initial estimation of the required stiffness for the support system with respect to the lateral deformations in four sites proposed, according to the studies of Line A Qom Subway.
Project specifications
Based on the geological studies of Line A Qom Subway Tunnel, the geological layers are classified into four soil classes. Qc-1 consists of gravely sand with fine content of 5 to 20%; Qc-2 is silty and clayey sand with fine content of 35 to 60%; Qf-1 is clayey silt with fine content of 60%; and Qf-2 is a silty clay layer with fine content above 60%. Line A of Qom subway passes the study area of the present study, which is located in Ammar e Yaser Street (Station A6). Based on the geotechnical studies of the project site, the site in the levels near the ground consists of Qc-2 but in the lower elevations, it is composed of Qc-1 and Qf-2.
Salam Trade Complex, located in the downtown of Qom city, has 6 underground stories and 6 above-ground stories. It is limited to the main street in the south and to urban decay in the three other directions. The final excavation depth, length, and width is -21, 36, and 32-52 m, respectively. The project structure consists of a steel moment frame with a retaining wall in the negative elevations and metal deck frame for ceiling construction. In this project, excavation wall deformation was monitored in three important sections (A, B, and C). Due to the vicinity to urban decay, a total station TS02 was used for monitoring these sections. According to the field surveys, the maximum horizontal deformation of the walls in sections A, B, and C is 24.10, 42.16, and 47.21 mm, respectively, which were measured in the 0, -1.5, and 0 m elevations.
Monitoring process and numerical simulation
To calibrate the prepared model, a sensitivity analysis was performed on geotechnical parameters including modulus of elasticity (E), internal friction angle (φ), and cohesion (C) of the layers by simulating 60 numerical models. Based on the sensitivity analysis results, an increase in internal friction angle and elasticity modulus for layer 1 (i.e., φ1 and E1) and elasticity modulus of layer 3 (E3) results in a decrease in lateral deformation. Finally, using the sensitivity analysis results and after several trials and errors, the numerical models for sections B and C were calibrated when reaching the depths of -8 and -11 m, respectively. Using these models, then, it is possible to predict deformations up to the end of the project.
To determine the required stiffness for the excavation support system, regarding the acceptable deformation of the adjacent soil mass, 160 numerical models were built and their results were analyzed. Based on the results of Brason and Zapata (2012), relative stiffens (R) were used to develop a relationship between the maximum lateral deformation of the wall and the required stiffness of the support system. R is a dimensionless parameter that represents the stiffness of a solid support system; the greater this value is, the more flexible the system would be. In this study, caisson pile length, excavation width, and buried depth of the wall were used for determining the R.
R =                                                        (1)
Figure 2 presents the maximum occurred deformation in terms of depth versus the relative stiffness for sites QC and QF.

Figure 2. Maximum deformation in terms of depth versus the relative stiffness for sites QC and QF
Conclusion
  1. According to the monitory data, the maximum lateral deformation in sections B and C until the end of the project was 42.16 and 47.2 mm, respectively. Moreover, the deformation of the other points inside the excavation was 30 mm.
  2. Considering the occurrence of maximum lateral deformations in the higher elevations in the monitored sections, it is inferred that excavation support at the ground level plays a key role in this approach. Hence, the lack of completing the structural frames and slabs for facilitating the excavation operation can lead to an increase in deformation levels.
  3. Based on the prepared graphs, the top-down approach in sites QC-2 and QF-2, compared to sites QF-1 and QC-1, provides a more desirable performance for deformation control.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb