Naser Hafezi Moghaddas, Abolfazl Soltani,
Volume 15, Issue 2 (9-2021)
Abstract
Safety design of structures concerning surface faulting effects such as shear and differential subsidence are very costly and in some cases are impossible. Then the appropriate approach for encountering surface faulting is to determine a suitable fault-avoidance zone. In this study, firstly the theorem of avoidance fault zone is presented, and then the setback area from the fault zone of South Mashhad fault is proposed. Recent studies show that South Mashhad fault is a right-lateral strike-slip fault with a normal component that cut the Quaternary sediments. In this work, the average slip rate and estimated return period for South Mashhad fault are 0.59 mm/yr and 2930 years, respectively. Accordingly, the proposed avoidance zones in the south (hanging-wall) and north (foot-wall) of the fault are 80 and 70 meters, respectively. Considering the avoidance zones, many residential and other important structures are located in the avoidance zone of the South Mashhad fault.
./files/site1/files/152/%D8%AD%D8%A7%D9%81%D8%B8%DB%8C.pdf
, , , ,
Volume 15, Issue 3 (12-2021)
Abstract
, , ,
Volume 15, Issue 4 (12-2021)
Abstract
Dr. Seyed Hossein Hosseini Lavassani, Mr. Hamed Alizadeh, Pro. Ali Massumi,
Volume 16, Issue 1 (5-2022)
Abstract
Many researches have been currently conducted on the effects of fault distance on structures revealing that their seismic response can differ according to their distance from the fault. Suspension bridges due to their long period and high flexibility can be more sensitive to this phenomenon, especially in vertical vibration. Since the engineers tend to use longer spans, the length factor should be studied more accurately. In this paper, the effects of length factor on the seismic response of the suspension bridge under near and far-fault ground motions were addressed. The Vincent Thomas and Golden Gate suspension bridges as short and long ones, respectively, are selected as the case studies. The seismic responses of two bridges under five main worldwide ground motions contained both near and far-fault ones, with the same peak ground’s acceleration, are evaluated. The results indicated that the response of both bridges to the near and far-fault ground motions are perfectly different. Short span suspension bridges are vulnerable to near-fault ground motions, whereas long span ones are completely susceptible to both near and far-fault ground motions, and by increasing the length of span, the sensitivity of bridge was increased against far-fault low frequency excitations. Also, maximum displacement responses of spans in both bridges did not increase by maximizing peak ground’s acceleration.
Mohadeseh Sadeghi, Naser Hafezi Moghads, Mohammad Ghafoori, Mehrdad Amiri, Ali Bashari,
Volume 16, Issue 2 (9-2022)
Abstract
The design of underground or terrestrial structures on the rock bed depends on the physical and mechanical properties. Considering the mining method in Tabas coal mine extraction method is long and destructive, the evaluation of the geomechanical properties of the rocks is more necessary. In this research, the characteristics of the rock units of the eastern tunnel No. 3 of Tabas coal Pervadeh mine were investigated. In this study, 3 samples of shale, sandstone and mudstone were examined. Considering the importance of the subject in this research, new experimental relations have been proposed, and their application shows desirable results. In order to obtain geomechanical characteristics and empirical relationships, physical tests such as porosity, water absorption percentage, unit volume weight, and mechanical properties such as uniaxial compressive strength, point load index, Brazilian tensile strength, direct cutting test, durability and brittleness index were carried out. To achieve the desired objective, the most appropriate relationships are presented using the regression method. Statistical analysis shows good correlation between different parameters in shale, sandstone and mudstone samples.
Dr Nasrollah Eftekhari, Dr Sasan Motaghed, Dr Lotfallah Emadali, Dr Hasi Sayyadpour,
Volume 16, Issue 2 (9-2022)
Abstract
In the variability of earthquake hazard analysis results, ground motion prediction equations play an important role. Selection of appropriate prediction relationships for the region can lead to stability and accuracy of earthquake hazard analysis results. In this study, different prediction relationships were investigated and analyzed for earthquake hazard analysis in Ahvaz city. These relationships were ranked based on the criteria of logarithmic probability, Euclidean distance and deviation information in different periods. Then the most efficient relationships were selected by data envelopment analysis (DEA) method on the basis of differences in the obtained results. Out of 67 possible relationships, 5 were identified as suitable relationships for earthquake hazard analysis in the Ahvaz urban area. Then, a special efficiency criterion was used to determine the weight of these relationships. The results of this study can help to reduce to a large extent the uncertainties involved in analyzing the seismic hazard of the area studied.
Kamal Ganjalipour, Seyyed Mahmoud Fatemi Aghda, Kamal Nabiollhi,
Volume 16, Issue 3 (12-2022)
Abstract
Electromagnetic methods in applied geophysics are advancing rapidly. Since the TDR system has grown, its use has led to innovative applications and comparisons with other previous measurement methods. A TDR system consists of a radar (electromagnetic) receiver and generator, a transmission line, and a waveguide. The electromagnetic pulse generated from inside the conductor cable moves towards the waveguide and is tested through the waveguide into the environment under test. In the last few years, the use of the TDR system to identify water leakage situations has been expanding. In this article, by performing tests on two-strand telecommunication cables as TDR sensors, the ability and accuracy of the time domain reflectometry method in detecting leakage situations has been evaluated. In this research, the two-stranded cable was buried under GC gravel clay material, and by increasing the percentage of soil moisture stepwise at two points, the sensitivity of the TDR method to the changes in moisture around the cable was investigated. Based on the TDR waveforms, the points of reflection coefficient changes are located at the distances of 9.5-9 and 4.5 meters, which is completely consistent with the actual distance of the test points. In this research, TDR moisture meter made by soil moisture company model 6050x1 was used. The results of this research show that the TDR method has the ability to be used as a monitoring system to detect leakage in dams, dikes and other geotechnical structures.
Dr Mohammad Fathollahy, Mr. Habib Rahimi Menbar, Dr. Gholamreza Shoaei,
Volume 16, Issue 3 (12-2022)
Abstract
Shear strength parameters are important for assessing the stability of structures, and are costly to calculate using conventional methods. In this research, simple geotechnical techniques and artificial intelligence were used to calculate the angle of internal friction and soil cohesion without the need for more complex testing. To this end, intact samples from 14 boreholes in Bandar Abbas, which had undergone primary geotechnical testing and direct cutting, were selected and used to train neural networks. 195 networks were trained in in this research. To achieve the best performance, feedforward neural networks were first trained in single and double layer modes with a low number of neurons in the middle layer, and the TRAIN BR function was selected due to the high ratio of R (0.97). Then, by incorporating additional layers, the Median model was trained using configurations of 3, 4, and 5 layers, each with varying numbers of neurons in the intermediate layer (50, 40, 30, 20, and 10). The results show that the four-layer MLP network gives the best results, for this mode R training 1, the test R is 0.90 and the total R is 0.98. Finally, to validate the neural network, 15 samples were selected and the input parameters of the network were trained in the optimal states of 2, 3, and 4 layers, then the output of the network was evaluated. For cohesion prediction, the neural network in 4-layer mode (R2=0.99) and 2, 3 and 4-layer networks (R2=0.99) have the best output for the friction angle.
Armin Aziminejad, Omid Makhdoom, Panan Zarfam, Abolreza Sarvghad Moghadam,
Volume 16, Issue 3 (12-2022)
Abstract
In most current seismic codes, the stiffness and strength of seismic members are considered to be independent, so that a change in the strength of the members does not result in a change in the stiffness of the members. Recent studies show that these parameters are interdependent. Therefore, the way these parameters are calculated and the arrangement of centers of mass, stiffness and strength can be effective in determining the seismic response. In this research, buildings with different levels of normalized yield eccentricity (ed/A) were designed according to the ASCE/SEI 07-22 seismic code (Code Design models) and compared with the Balance-25% and Symmetric Strength models. The results of the nonlinear static analysis and incremental dynamic analysis showed that the average spectral acceleration at the level of collapse in the Balance-25% and Symmetric Strength models increased by approximately 18% compared to the Code Design model. Therefore, these models are safer than the Code Design model. In addition, the average of the peak rotation of floors and the maximum inter-story drift at the collapse level in the Balance-25% and Symmetric Strength models has decreased by 100% and 12% respectively compared to the Code Design model. Therefore, the Code Design model had the lowest and the Balance-25% and Symmetric Strength models had the highest dynamic seismic performance.
Reza Ahmadi,
Volume 17, Issue 1 (3-2023)
Abstract
In the present study, productivity was determined as one of the most important evaluation criteria for the building stone to cut the different faces of travertine using the diamond wire cutting method. For this purpose, measurements were carried out in two zones named 8E and 8W in the northern region of Mahallat, Hajiabad travertine located in the Markazi Province. These zones were selected because of their greater similarity in terms of geological conditions, physical and mechanical properties of the stone, quarrying facilities, machinery and equipment. In order to achieve the objective, structural studies as joint study were first carried out as a joint study through field observations of fractures, drawing rose diagrams and analyzing them. Then, the productivity of electro deposited type diamond wire cutting was measured on seven blocks in two cutting panels of the 8E zone and 13 blocks in three cutting panels of the 8W zone over a period of 45 working days was measured. The results of the research indicate that the average productivities are 7.09 and 5.71 square meters per hour for the 8E and 8W zones, respectively and the overall average value for the 8E and 8W zones is 6.4 square meters per hour. Based on these results, although the average productivity level in these zones is acceptable, but well below the ideal level (18 square meters per hour). Therefore, the productivity in this area needs to be increased.
Ms. Somayeh Arab-Ameri, Dr. Davood Fereidooni,
Volume 17, Issue 1 (3-2023)
Abstract
Ultrasonic wave velocity testing is a non-destructive, economical, simple and rapid method used for determining the physical and engineering properties of rock. This test is based on the velocity of the elastic wave in rocks. The ultrasonic wave velocity of rocks depends on intrinsic and environmental properties such as mineralogical composition, density, porosity, grain size, shape, texture, anisotropy, water content, and temperature of rocks. In this research, 10 different types of building stone, including limestone and granite, were cut into 50 cubic specimens with dimensions of 10Í4Î4 cm, and then they were tested using the Pandit wave velocity testing machine to find the effective parameters on the velocity of the ultrasonic wave should be investigated in them. These parameters include dry unit weight, temperature, type of pore fluid, state of filling material and loading. Based on the obtained results, the correlation between ultrasonic wave velocity and dry unit weight is a direct linear relationship and its relationship with the type of pore fluid condition of the filling material and loading is inverse relationship. In addition, increasing the temperature increases the velocity of the ultrasonic wave. Also, in terms of the type of pore fluid, the lowest value of the wave velocity was obtained in the state saturated with water and the highest value of the wave velocity was obtained in the common salt solution with a concentration of 150%. Regarding the state of the rock pore filling material, the highest velocity value was observed in the frozen filling state and the lowest velocity value was observed in the air filling state. As the load increases, the velocity of the ultrasonic waves decreases in the studied rocks.
- Fatemeh Khalooei, - Heeva Elmizadeh,
Volume 17, Issue 2 (9-2023)
Abstract
In this study, images from the Sentile 2 satellite have been used. In the study, the proximity of the images was taken into account to minimize the error due to changes in gray scale. Also in this study, GIS and remote sensing data and SNAP software were used as tools.According to the subsidence zones obtained in the study area, it is observed that the maximum amount of subsidence around the tomb of Sheikh Mohammad is between 80-90 mm per year of landslide. The results show that the highest rate of subsidence in the study area is due to agricultural use and irrigated agriculture in the region. This problem may be mainly related to the issue of groundwater extraction for agriculture and drinking, and possibly other factors such as geology and tectonics. The centralization of the maximum rate of subsidence in residential areas has led to relatively insecure living conditions for the inhabitants and increased their vulnerability to land hazards. Also, considering the results of the steps taken to study the phenomenon of land subsidence in the study area, it is concluded that the phenomenon of land subsidence has a significant relationship with the grain size and with the lowering of the water table. Therefore, the combination of radar interference methods with high spatial resolution with high spatial resolution, satellite positioning systems with high temporal satellite positioning systems with high temporal resolution, and precise alignment with very high accuracy, is a good way of to study the movement of the earth's surface.
Mr. Mehdi Hashemi, Dr Davood Fereidooni,
Volume 17, Issue 2 (9-2023)
Abstract
In this research, the durability and deterioration of two historical stone monuments, including the Dashkasan rock temple and the historical stone inscriptions of the Sojas cemetery in the south of Zanjan province, were investigated. For this purpose, two stone block samples were selected from each historical work for laboratory study. Based on the geological investigations, the historical monuments of the Dashkasan rock temple were carved on tuffs of the Karaj Formation. According to the thin section study, the Dashkasan temple rocks composed of the crystal vitric tuff and lithic vitric tuff and the samples of the historical inscriptions of the Sojas cemetery were limestone and very fine-grained sandstone, quartz being the dominant mineral of these rocks. In terms of physical characteristics, the samples studied have medium density and porosity. In terms of durability and deterioration, all four samples were subjected to 15 cycles of the slake durability test in normal water and sodium sulphate solution. The degradation function model and half-life of all four samples were determined and analysed. The results show that all four samples have a lower slake-durability index in sodium sulphate solution than in normal water. Due to the presence of quartz in lime or clay matrix, the samples of historical stone inscriptions from Sojas cemetery have more water absorption and porosity and are more durable, and their half-life is lower than the samples from Dashkasan rock temple.
Mister Hamzeh Torkamanitombeki, The Doctor Mashalah Khamehchiyan, Mistress Maryam Nazari, Mister Shazdi Safari,
Volume 17, Issue 3 (12-2023)
Abstract
The purpose of the research is to investigate the risk of liquefaction risk at the beaches of Bustano in the western part of Bandar Abbas in Hormozgan province. The periodic stress method was used as the method to evaluate the liquefaction potential based on the data obtained from Standard Penetration Test (SPT). The acceleration of 0.35 g was chosen as the maximum acceleration of the bedrock, and cross sections were extracted using Rockwork software. From an engineering geological point of view, the characteristics of the sedimentary deposits and the collected geotechnical information were analyzed to generate geotechnical index profiles. As the study area is located at the edge of the folded Zagros, seismically it has the characteristics of the Zagros-Makran transition zone which basically exerts the most pressure on the saturated sediments of the area. Due to the strong movement of the earth in generating liquefaction, the seismic bedrock acceleration (PGA) and the maximum horizontal acceleration at the ground surface (amax) were evaluated by liquefaction analysis using LiqIT v.4.70 software. The results indicate that the sandy and silty sediments of the study area are the outcome of the weather changing processes at the northern altitudes of the region. Granular sand and silt sediments were found under favorable conditions with high groundwater level, confirming the presence of liquefaction phenomenon in the area. Zoning maps of the intensity of liquefaction were extracted at the surface and at depth were obtained in different parts of the Bustano, indicating the different classes of risk of liquefaction in the soil of this area. In general, the occurrence of liquefaction with high intensity liquefaction was predicted for the Bustano area.
Miss Faeze Majidi, Dr Mohammad Fathollahy, Engineer Habib Rahimi Menbar,
Volume 17, Issue 3 (12-2023)
Abstract
Aggregate is the main component of concrete and plays an essential role in the quality of concrete. Alkaline silicate reaction (ASR) is one of the most important reactions in concrete that can lead to concrete destruction. Aggregates containing active silica are responsible for this reaction, and the higher the amount, the greater the expected volume of reactions. The rate of increase of the reactions with changes in the amount of silica aggregates is part of the subject of this research. In this regard, a material was selected as the base material from the mountain quarry, and the necessary tests were performed on it by adding silica aggregates, 5, 10, 15, and 20 percent, the ASR test was performed on them according to the ASTM C1260 standard; The results showed that the expansion of the samples will increase by 0.01, 0.02, 0.04 and 0.06% respectively. Next, for the effect of microsilica on ASR, 5, 10, 15, and 20% were added to the materials and the results showed that microsilica reduced the expansion of the samples by 0.009, 0.014, 0.022, and 0.032 respectively and the increase of 20% of microsilica has reduced the expansion of the samples by 50%.
Hossein Mohammadzadeh, Vahid Naseri Hesar, Hamid Ghalibaf Mohammadabadi,
Volume 17, Issue 4 (12-2023)
Abstract
Due to the complex hydrogeology of karst areas, the sealing of dams in such areas is more difficult, time-consuming and expensive, and the possibility of water leaksge is higher. After the dewatering of the Gharetikan dam and appearance of downstream springs and the leakage of water from the abutment of the Tirgan limestone formation, the possibility of karst development is considered to be the most important problem of this dam. In this article, the potential of karst development in the area and supports of the Gharetikan Dam has been studied by carrying out geological studies, structural geology and joint studies, geotechnical permeability and analysis hierarchy method (AHP).. The results show that about 14.6% of the Gharetikan dam area has a high potential for karst development. The area of Gharetikan dam area is affected by the Sarroud fault zone system, which has caused the collapse of the left side of the dam axis. The joint studies in the abutment of Gharetikan dam show three main types of joints. Two groups of joints are located at the intersection with the dam axis and the slope of the other group of joints is towards the dam basin. The investigating of Lugeon permeability tests in the dam construction shows that the highest permeability can be seen in the left abutment with turbulent flow, and then under the river bed with linear and turbulent flow, but there is no permeability in the right abutment. And the flow is mostly linear. According to the structural-conceptual model prepared from the location of the Gharetikan dam, to the location of the dam axis in the Sarroud fault system, and the amount opening and the slope direction of the joints in each station, it is expected that the amount of water leakage and escape and the possibility of karst development from the left side and the bed of the dam will be more than the right side of the dam.
M.sc. Behrooz Margan, Dr. Davood Fereidooni,
Volume 18, Issue 1 (5-2024)
Abstract
In this research, various aspects of the rock burst phenomenon in the Haji-Abad tunnel site in the Hormozgan province have been discussed. Considering that the tunnel site is located in an active tectonized environment in terms of geological conditions and the depth of the tunnel in some parts reaches more than 100 to 253 m, and also considering the variety of rocks in the tunnel site, which are massive rocks with high strength up to broken fault zones, the importance of studying and investigating the phenomenon of rock burst is very important for the safety of the labor force and equipment and the stability of the underground space. For this purpose, the Haji-Abad tunnel site has been divided into ten units of engineering geological conditions using the BGD method, which includes eight units T1 to T8 and two crashed zones Tf1 and Tf2. Then, using common experimental and semi-experimental methods, the phenomenon of rock burst in the tunnel site has been evaluated. In the experimental procedure, Goel et al.'s criterion was used, according to which the rock burst phenomenon does not occur in any of the tunnel units. Using semi-empirical methods, including the criterion of linear elastic energy of the tunnel site units in the range of very low to moderate rock burst phenomena and using the tangential stress criterion, the site units in the medium to very high range and based on the stress criteria of these units in the moderate to high range and finally, using the fragility criterion, all site units are placed in the range of high rock burst.
Mohammad Zainali, Dr Mohammad Reza Asef, Dr Ruholah Nadri,
Volume 18, Issue 1 (5-2024)
Abstract
This paper investigates the application of geomechanical and geological engineering methods to determine the optimum working face width for the safe and efficient extraction of manganese ore extraction at the Venarch Mine (Qom Province, Central part of Iran). The underground workings on the west face (240m depth) present significant geotechnical challenges due to the presence of faults, clay seams, and loose rock layers. These features require careful careful stability analysis to ensure the safety and economic viability of the underground mining operation. This study uses three established methods for rock mass classification and stability assessment. The Rock Mass Rating (RMR) classification system, the Q-system (Barton), and the numerical analysis using Plaxis 3D software. A robust and data-driven approach to determining the optimum workshop width was achieved by employing a synergistic combination of these three methods, together with meticulous ground observations and expert engineering judgement. This framework offers a powerful tool for determining the optimal and safe workshop width for this sector of the mine. By capitalizing on the strengths of each methodology, this research aims to establish a data-driven and informed decision-making process to ensure a stable and economically viable approach.
Seyyed Mahmoud Fatemi Aghda, Seyyed Sara Mousavi Herati, Mehdi Talkhablo, Amir Maziar Raeis Ghasemi,
Volume 18, Issue 2 (9-2024)
Abstract
The alkali-silica reaction of aggregates is one of the most significant factors in the destruction of concrete structures worldwide. This is due to chemical reactions between alkaline fluids in concrete voids and active silica minerals present in some aggregates. Considering that many physical, chemical and mechanical properties of concrete are related to aggregates, the role of aggregates in concrete is crucial. This research aims to investigate the compatibility of aggregate petrographic studies and accelerated prismatic mortar testing in predicting the reactivity of aggregates and determining the intensity of aggregate reactivity using the DRI index (a semi-quantitative complementary petrographic analysis). The study was carried out on laboratory samples of aggregates from mines around Tehran, using the ASTM C295, ASTM C1260 and ASTM C856-4 tests. The results showed that pyroclastic aggregates, which include sandy tuff, crystalline tuff (dacitic andesite) and glassy tuff, have the potential to cause an alkali-silica reaction due to their glassy background and microcrystalline silica. During the alkaline reaction tests of the aggregates, evidence of gel was found in cracks, holes and cement paste. In addition, the DRI index showed that the fine aggregates of both study areas were in the "slightly damaged" category and the coarse aggregates were in the "severely damaged" category.
Dr Sasan Motaghed, Dr Marzieh Shamsizadeh, Dr Nasrolla Eftekhari,
Volume 18, Issue 3 (12-2024)
Abstract
In this study, we present the Seismic Hazard Possibility Space (SHPS) for the city of Ahvaz. To achieve this, we applied the intuitionistic fuzzy method to weigh the logic tree used in the hazard analysis and constructed the SHPS based on expert opinions regarding the degrees of membership and non-membership. Hazard disaggregation was performed by through the concept of intuitionistic fuzzy sets, leading to the development of an intuitionistic fuzzy of an Intuitionistic Fuzzy Logic Tree (IFLT). The SHPS includes both the degree of membership and non-membership for pathways contributing to hazard generation. The SHPS illustrates the acceptance, non-acceptance, and ambiguity associated with potential hazard values from an expert perspective, thus assisting analysts in selecting appropriate hazard values. According to the numerical results of our analysis in the Ahvaz region, the seismic hazard is located in an uncertainty (unacceptability) zone, indicating that experts have low confidence in the results of the probabilistic seismic hazard analysis (PSHA) for Ahvaz. In addition, the hazard is characterized by an "unconfident zone". This finding indicates that experts are fairly confident in the results of the analysis for Ahvaz. This finding implies that the models and parameters used in the PSHA for this region are not accepted by experts, and further efforts are needed to identify or develop appropriate models and accurate parameters specific to the area. In conclusion, this research demonstrates how intuitionistic fuzzy sets can be used to construct SHPS, providing a novel framework for quantifying uncertainty and expert opinion in hazard assessment.