Search published articles


Showing 68 results for Soil

Mehdi Jalili, Hosein Saeedirad, Mohammad Javad Shabani,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
Dispersive soils are problematic and they cause a great many of local damages and destructions in hydraulic structures such as dikes and irrigation channels. The correct identification and recognition of divergence are fundamental measures taken in line with preventing the early destruction of the hydraulic structures. The soil improvement using lime, especially in clayey soils (CL), brings about an increase in the optimum moisture percentage, reduction of the maximum dry unit weight, reduction of swelling potential, increase in the strength and elasticity module. The effect of lime on soil can be classified into two groups, namely short and long-term stabilization. Raise of the soil’s workability is counted amongst the short-term modification measures and it is the most important factor in the early improvement stages. The increase in the strength and stability can be considered as the lime utilization on long-term results occurring during curing and afterwards. Also, according to the reports, swelling and damages occur in the lime-stabilized soil containing sulfate. The effective role of the iron furnace slag has been well recognized in increasing the strength against sulfates and corrosive environment conditions of the mortar containing lime and sulfates.
Material and methods
Adding the slag products of the melting furnaces and lime is a method used to stabilize dispersive soils. The present study makes use of a mixture of clay featuring low plasticity with 1% and 2% lime and slag, for 0.5%, 1%, 3% and 5% of the weight, to improve dispersivity, shear strength and plasticity. The samples were kept in constant temperature and humidity for a day and then were subjected to direct shear, uniaxial strength and pinhole tests.
Results and discussion
It was observed based on pinhole experiment of the initial dispersive soil sample, denoted as D1, that the sample, shown by ND2, containing lime, for 2% of the weight, and slag, for 5% of the weight, turned out to have become non-divergent. The results of the direct shear test showed that the adhesion coefficient of the slag-free samples stabilized using 1% lime has been increased from 0.238 kg/cm2 to, respectively, 0.251 kg/cm2, 0.373 kg/cm2, 0.41 kg/cm2 and 0.48 kg/cm2  per every 0.5%, 1%, 3% and 5% slag added. The adhesion of the samples stabilized using 2% lime as determined in the direct shear experiment were 0.615 kg/cm2, 0.671 kg/cm2, 0.724kg/cm2 and 0.757kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. Also, the internal friction angle of the samples stabilized using 1% lime was found an increase from 14.3° for slag-free samples to 18.11°, 21.3°, 21.86° and 21.92° per every 0.5%, 1%, 3% and 5% added slag. As for the samples stabilized using 2% lime, the internal friction angles were found in direct shear test equal to 23.15°, 23.53°, 23.76° and 24.12° per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength of the slag-free samples stabilized using 1% lime was found an increase  from 1.0014 kg/cm2 to, respectively, 1.0616 kg/cm2, 1.0782 kg/cm2, 1.2127 kg/cm2 and 1.2246 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The uniaxial strength rates has been determined in the direct shear test of the samples stabilized using 2% lime were 1.1367 kg/cm2, 1.1885 kg/cm2, 1.2322 kg/cm2 and 1.2872 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added. The amount of axial strain of the slag free samples stabilized using 1% lime was found decreased from 9.6842% to, respectively, 9.3333%, 9.2683%, 9.6364% and 8.4444% per every 0.5%, 1%, 3% and 5% slag added. Moreover, the axial strain amounts obtained for the samples stabilized using 2% lime were 7.7333 kg/cm2, 7.6316 kg/cm2, 7.1517 kg/cm2 and 4.7619 kg/cm2 per every 0.5%, 1%, 3% and 5% slag added.
The study results indicate that slag and lime have the capacity of improving the studied soil’s dispersivity. Furthermore, it was figured out that adding slag to the soil causes an increase in the soil strength and improves the shear strength parameters. It can be stated according to the observed results that the use of slag, a byproduct of iron smelting industry, as a substitute for a given percentage of lime is effective on the reduction of the clay soil’s divergence potential. The results of the experiments carried out to determine Atterberg limits are suggestive of the idea that the increase in the slag and lime fractions brings about a decrease in the liquid limit and plasticity and improves the plasticity properties of the soil. The reason why the soil plasticity has been reduced after being mixed with lime and slag is the cationic exchange and coarsening of the soil texture. Addition of lime to the soil causes an increase in the plasticity limit and a reduction in the liquid limit. Therefore, the plasticity index is decreased and the plasticity characteristics of the soil are improved. Adding 1% lime to the dispersive soil leads to small reduction of the liquid limit from 32.43% to 31.73%, a small increase in the plasticity limit from 13.42% to 14.66% and a insignificant decrease in the plasticity index from 19.01% to 17.07%.
Shima Sadat Hoseini, Ali Ghanbari, Mohammad Ali Rafiei Nazari,
Volume 14, Issue 2 (8-2020)
Abstract

Introduction
The discussion of modeling the interaction of soil-pile groups due to a large number of parameters involved in is one of the complex topics and it has been one of the interests to researchers in recent years and has been dealt with in various ways. In recent years, the artificial neural network method has been used in many issues related to geotechnical engineering, including issues related to piles.. In this study, firstly it was tried to explain the importance of soil - structure interaction in calculating the dynamic response of bridges. Then, the effect of different effective parameters in calculating the interaction stiffness of the pile - soil group using artificial neural network was studied.  For this purpose, firstly, Sadr Bridge ( The intersection of Modarress and Kaveh Boulevard because the presence of tallest piers ) in the transverse direction, considering and without considering of the effect of soil - structure interaction was analyzed. The analysis was carried out in which the substructure soil was replaced with a set of springs and dashpots along the piles. Considering the fact that many factors are involved in determining the equivalent stiffness of springs, in the second stage, the effect of different factors on the stiffness of spring equations using artificial neural network was investigated. Finally, the artificial neural network method was used as a suitable method in order to estimate the equivalent stiffness values, the equivalent stiffness of the pile - soil group was introduced for different input values. equivalent stiffness of the substructure soil using the artificial neural network ,has not been used by researchers yet, so estimation of the optimal length and diameter of piles used in constructions and estimating the seismic performance of the bridge system after its implementation could be effective .
Material and methods
In this paper, spring-dashpot method is proposed to the non-uniform analysis of single-pier bridges which led to a 5-degree freedom model in the case of Sadr Bridge. This study also endeavors to investigate the SSI effect in dynamic analysis of bridges. This method is based on the traditional spring-dashpot method but in this method, non-linear stiffness is used along the piles, instead of linear stiffness and upgraded shape functions and coefficients are applied to make more precise mass, stiffness and damping matrices. Then the seismic responses of Sadr Bridge are compared in different conditions including or excluding the SSI effects. Considering the fact that in the present study to calculate the stiffness of the soil-pile group at depth, due to the effect of soil - structure interaction, the recommended method by API is used, the study of neural network analysis was used and the effect of different parameters used to determine the complexity of the soil-pile group system has been evaluated. The multi-layer feeder network, which has the most application in engineering issues, has an input layer, an output layer and one or more layers of hidden content, has been used for this purpose.  The best model of the neural network with a topology of 1-20-6 was provided using the hyperbolic sigmoid activation function, and the Levenberg Marquardt model and the training cycle 84, which had the least error mean square and the best regression coefficient. The effect of internal friction angle, soil density, pile diameter and the resistance per unit length has been evaluated with this method.
Results and discussion
[8] ارائه شده است صورت می پذیرد In this study, the importance of considering the effect of soil - structure interaction on the dynamic response of the Sadr Bridge was studied. Dynamic stiffness of the soil around the pile group was calculated based on the equivalent linear method and using the p-y springs. So, the effect of substructure soil was considered in dynamic analysis of the system . The artificial neural network was used to predict the stiffness of the soil - pile group, based on various input parameters and the stiffness sensitivity analysis of the calculated output values was conducted. In hard soils, the stiffness of the pile - soil group increases with increasing the diameter of the pile in the range of 1 to 1.5 m in diameter. However, in the range of 0.5 to 1 m in diameter, the diameter of the pile does not have much effect on the stiffness of the system and also stiffness decreases in the range of 1.5 to 2 m in diameter by increasing the pile diameter. Soil specific weight and angle of internal friction can change the system stiffness but the effect of the soil specific density is much greater on the stiffness of the soil-pile group system. Generally, the specific density in the range of 1000 to 2300 (kg/m3) will increase the stiffness of the system. In general, the ultimate strength of the soil among 100 to 550 (kN/m) affects the system stiffness. This effect within the ultimate strength between 100 and 220 (kN/m) causes increasing in the interaction stiffness value of the system and in the range of 220 to 550 (kN/m) causes reducing the stiffness of the system . The ultimate strength values ​​in a unit of length outside of the above range have little effect on the system interference stiffness. Despite the fact that the problem of calculating the soil - pile interaction stiffness is a direct solution, the use of the proposed neural network model can help in predicting optimal values ​​of diameter and length of the pile to achieve maximum soil- pile stiffness and especially for long bridges it will has a significant impact on reducing cost and seismic design of the bridge.
Conclusion
The results of this study are as follows:
The results showed that considering the interaction effect, although it increases the relative displacement of the deck, reduces the maximum base shear and moment. This suggests that considering the maximum base shear and moment in the interaction conditions may not lead to a seismic design for certainty, although closer to reality.
Artificial neural network is an efficient way and new method to predict the stiffness of the soil-pile group system based on different input values that have not been used yet. So that with the physical and mechanical properties of the soil as well as the geometric properties of the piles, it is possible to predict the interaction stiffness values with the proper precision.
According to the results and diagrams obtained from the neural network model, which are mainly sinusoidal, the optimal values ​​of the interaction stiffness can be obtained by obtaining the pile diameter, specific gravity, the internal soil friction soil to achieve optimal interaction strength. It is also possible for each site to estimate the depth of the piles in order to achieve optimal hardness. 
./files/site1/files/142/4Extended_Abstracts.pdf
Moslem Babaei, Ali Raeesi Estabragh, Jamal Abdollahi, Mohadeseh Amini, Gholamali Vakili,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
Expansive soils are a very common cause of extreme damages because they are susceptible to volume change due to a change in water content. Geotechnical problems associated with the expansive soils are well documented in different literature. As a result, a clear understanding of the behavior of such soils is required for the effective design of structures and infrastructures on these soils. The effects of hydrocarbon pollutants as a flooding fluid on the swelling potential of an expansive soil during wetting and drying cycles have not been considered in the previous researches. The aim of this research is to study the properties of an expansive soil with different flooding fluids, i.e. distilled water and solutions of glycerol with 10 and 20% through a number of cycles of wetting and drying tests under constant surcharge pressure.
Material and methods
The soil that was used in this work was a highly expansive clay soil (according to the classification by McKeen (1992)). It was prepared by mixing 20% bentonite and 80% kaolin. This soil was classified as a clay with high plasticity according to the Unified Soil Classification System (USCS). The optimum water content in the standard compaction test was 18.11% and the maximum dry unit weight was 16.27 kN/m3.
Distilled water and solutions of glycerol with concentrations of 10 and 20% were used for flooding the samples. To prepare the glycerol solutions, the required amount of glycerol was mixed with distilled water.
For making compacted samples for testing, the needed air-dried soil was weighed and the required water was added to it to reach the desired water content (4% below the optimum water content according to the compaction curve). The soil and water were mixed by hand and then was kept in a plastic bag for 24 hours to allow the uniform distribution of moisture in the soil. Samples were prepared by static compaction of the moist soil in a special mould.
A conventional oedometer was modified to allow the wetting and drying tests to be conducted under controlled surcharge pressure and temperature. During wetting and drying, the vertical deformation of the sample was measured by using a dial gauge. The variation of water content with void ratio during wetting and drying cycles was determined by using the information from the duplicated samples.
Results and discussion
Fig. 1 shows the variations of vertical deformation during wetting and drying cycles for samples that were flooded with distilled water and solutions of 10 and 20% glycerol. This figure illustrates that by increasing the number of cycles the amount of irreversible deformation is reduced until the equilibrium condition is achieved where the deformation due to wetting and drying is nearly the same. These results indicate that by increasing the concentration of glycerol the equilibrium condition with reversible deformation is reached in a fewer cycle of wetting and drying than the sample that was flooded with distilled water.

Figure 1. Wetting and drying cycles for different quality of flooding fluids
The results of void ratio versus water content at the equilibrium conditions for the samples flooded with distilled water and solutions of 10 and 20% glycerol (that were obtained from duplicated samples) are shown in Fig. 2. This figure displays that the paths of drying-wetting for different flooding fluids are nearly S-shaped curves. It is also seen in this figure that the order of the curves in this space is dependent on the percent of glycerol, the curves for the sample flooded with distilled water and 20% glycerol are located at the top and bottom of the space of void ratio against water content.

Figure 2. Water content-void ratio paths for different quality of flooding fluids
The change in the thickness of the diffuse double layer (DDL) affects on the swelling behavior of soil. The thickness of DDL is dependent on factors such as valency and concentration of cations, temperature, and dielectric constant. The value of dielectric constant for water is 80 and for solutions of 10 and 20% glycerol are 74.9 and 71.8, respectively. The magnitude of the attractive and repulsive forces between clay particles are inversely and directly depended on the value of the dielectric constant. The reduction in the value of the dielectric constant causes an increase in the attractive forces and leads to a reduction in the thickness of DDL. When the flooding fluid is a solution of glycerol, the initial chemical composition of pore fluid in the sample is changed. The chemical composition of pore fluid has different effects on the structure of clay soil such as changes in the thickness of DDL. When the flooding fluid is distilled water the pore fluid of samples has a dielectric constant of about 80. Therefore, the values of attractive and repulsive forces are not changed because of the same dielectric constant of flooding fluid and pore fluid. The results of tests on these samples (flooded with distilled water) show that by repeating the wetting and drying cycles the potential of swelling is reduced and after several cycles a reversible equilibrium condition is attained as depicted in Fig.1. When the pore fluid is the solution of glycerol, the attractive forces are increased due to the reduction of the dielectric constant of pore fluid and causes a reduction in the thickness of DDL. The shrinking of DDL is led to the formation of flocculated structure in the soil and results in pasting of particles together leading to the reduction potential of swelling. When the concentration solution of glycerol is increased the dielectric constant is decreased, the magnitude of attractive forces is increased and the degree of flocculation of the soil structure is increased that is yielded to a reduction of swelling potential.
Conclusion
Effect of different flooding fluids on the properties of an expansive soil during wetting and drying cycles were studied. The following conclusions can be drawn from the present research:
-After a number of wetting and drying cycles, the observed irreversible          deformation was diminished and equilibrium was achieved. The solution of glycerol causes more reduction in the potential of swelling than distilled water.
-The wetting and drying paths in the space of void ratio and water content are S-shaped curves. The variations in the void ratio of samples flooded with the solution of glycerol are smaller than distilled water../files/site1/files/142/babaei.pdf
 
 
Ali M. Rajabi, Shima Bakhshi Ardakani,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Improving the geotechnical characteristics of soils including superficial or deep soils has always been a challenge to geotechnical engineers. Therefore, various physical and chemical methods are used to improve different types of soils. In general, any physical, chemical, biological or combination of methods are used to change the characteristics of natural soil mass in order to achieve engineering goals which is defined in the "soil stabilization." Among different types of additives for soil stabilization, the use of pozzolans has been investigated by researchers because of their chemical compatibility with the environment and the cementation products due to chemical reactions. Todays, a lot of researches has been done on the use of natural or artificial zeolites as pozzolanic materials for the production of cement mixtures. This material, as a pozzolan, increases the speed of the pozzolanic reactions and reduces the density of cement products. However, many studies have been done to investigate the effect of zeolite and sepiolite on the resistance of cement products such as concrete, but so far, the use of these additives has been less considered for soil improvement. On the other hand, because of the compatibility of zeolite and sepiolite with the environment and their unique physiochemical properties, it is necessary to pay attention to these additives in order to improve the soil. Therefore, in this research, the effect of zeolite and sepillot additives with different percentages at different treatment times have been investigated to determine the elasticity modulus and hydraulic conductivity with focus on soil microstructure behavior.
Materials and methods
1. The properties of the soils
In this research, two types of soil including clayey sand (with 20% clay) and sandy clay (with 51% of clay) were used. The studied soils were a mixture of clay and sand of Firoozkouh (a typical type of sand located in north of Iran). Some physiochemical properties of zeolite and sepiolite are presented in Table 1.
Table 1. Physiochemical properties of zeolite and sepiolite used in this study
L.O.I. Na2O K2O MgO CaO Fe2O3 Al2O3 SiO2   Chemical component
25.11 0.02 0.01 15.73 0.01 o.61 0.3 55.3   Sepiolite (%)S
11.94 0.13 - 0.87 2.45 1.26 13.54 69.74   Zeolite (%)
2. Experiments
The uniaxial compressive strength tests were performed at 0.1 mm/min according to ASTM D2166 standard. The stabilized soil samples were compacted at percentages of 0, 5, 10, 15, 20 and 25 in cylindrical molds (38mm × 76mm) in five layers to achieve the desired density. In order to investigate the effect of curing time, the samples were placed inside sealed containers and underwent the test at instantaneous, 7, 14, and 28 days and at the desired additive percentages. To investigate the effect of additives on the soil hydraulic conductivity, clayey sand soil with additives 5, 10, 15, 20, and 25% was prepared using dry mixing method. Then, the prepared mixture was poured from a specific height into the permeability mold with a height of 8.65 cm and diameter of 5 cm. In this way, the specific dry unit weight of all samples was obtained as 1.47 g/cm3, close to the minimum specific dry unit weight. In this research, concerning the considerable effect of fine-grained soils on hydraulic conductivity, falling head test was used to determine the permeability coefficient.
In order to the morphology of the clayey sand soil without additives and stabilized with additives 15% was examined through SEM test.
Discussion and results
1. Modulus of elasticity
In this study, after uniaxial tests in different percentages and ages, the stress-strain graphs were plotted and then the elasticity modulus was calculated. The results showed that, with increasing zeolite content, the modulus of elasticity has been increased and, with increasing curing time, except for a slight decrease, after 7 days, the modulus of elasticity increased. During the initial treatment (7 days), the hardness of the sandy clay soil decreased and then increased with increasing time. In general, hardness in both soils in the high percentages of zeolite is significantly is increased.
Also, the effect of sepiolite on the modulus of elasticity has been studied. The results indicate that with the increase in the percentage of additive and lengthening the curing time, the modulus of elasticity is increased. This increase in the stabilization of both sandy clay and clayey sand soil is almost the same. In addition, in the case of sepiolite modification, the elasticity of sandy clay and clayey sand is approximately equal to 5 times in comparison to the initial value of unstabilized soil. However, in zeolite, the modulus of elasticity in clayey sand soils is almost 2 times, and sandy clay is nearly 5 times higher.
2. Permeability
To investigate the effect of additives on the soil hydraulic conductivity, clayey sand soil with additives 5, 10, 15, 20, and 25% was prepared using dry mixing method. The samples were saturated in a short period and permeability test was carried out immediately. Permeability coefficient changes were mostly influenced by physical factors. Therefore, due to the fineness of both types of additives, the hydraulic conductivity decreases with increasing additive content. The amount of reduced hydraulic conductivity in sepiolite stabilization is greater than zeolite due to the structure of the sepiolite (fiber-shaped) compared to zeolite.
 
 
3. SEM imaging
In this study, attempts were made to examine the reasons behind the obtained results more carefully through SEM imaging.

c                                     b                              a
Figure 1. SEM image of non-stabilized clayey sand soil (a) soil stabilized with zeolite 15% (b) soil stabilized with sepiolite 15% (c) during the curing time of 28 days at magnifications 10000X
Figure 1a displays the SEM image of non-stabilized clayey sand soil. As can be seen in the figure, the soil structure is clear as layered and clay scales can be seen as laminated. Figure 1b demonstrates the SEM images of clayey sand soil stabilized with zeolite 15% during the curing time of 28 days. The sample has lost its layered structure in response to stabilization with zeolite during the curing time and changed into an integrated structure. This can be due to incidence of chemical reactions such as ion exchange and pozzolanic reactions in response to adding zeolite. Figure 1c demonstrates the SEM images of clayey sand soil stabilized with sepiolite 15% during the curing time of 28 days. As shown in the figure, the sepiolite has a fibrous-shaped structure that is longitudinally twisted. Also, with  curing time increase, complex structures have emerged that could be due to the occurrence of chemical reactions.
Conclusion
This study examined the effect of zeolite and sepiolite additives on strength parameter of clayey soils. Accordingly, uniaxial compressive strength test was performed on clayey sand and sandy clay soil at percentages of 0, 5, 10, 15, 20 and 25% of zeolite and sepiolite with instantaneous curing times of 7, 14 and 28 days. Further, permeability test was conducted at different percentages on stabilized clayey sand soil. Also, to investigate the effect of these materials on soil microstructure, SEM imaging was performed at 28 days. The results show that both additives increase the elastic modulus of clayey sand and sandy clay soils. Also, the results indicate a steady increase in the stiffness of the cured soil with sepiolite during processing time. However, reducing soil hardness can be seen in stabilizing with zeolite at lower rates and lower percentages. In permeability test, hydraulic conductivity decreases with increasing additive content. The rate of permeability reduction in sepiolite is higher than zeolite. SEM images show that chemical reactions create an integrated structure that ultimately increases uniaxial compressive strength and modulus of elasticity. Also, SEM imaging depicts physical changes along chemical reaction in soil stabilized with sepiolite. Ultimately, increasing soil strength resulting from additive alongside environmentally friendliness is recommended in superficial and deep improvement of soil../files/site1/files/144/Rajabi.pdf
 
Soheil Ghareh, Kimiya Yazdani, Fatemeh Akhlaghi,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
The existence of problematic soils due to their geotechnical properties, such as low strength and stability, high compressibility, and swelling, is one of the most important issues and challenges that geotechnical and civil engineers are faced in urban environments, especially in metropolises. Various methods are used to stabilize and to improve the behavior of problematical soils such as compaction, consolidation, stone columns, jet grouting, biological procedures, and additive materials including nanomaterials. Because of their high specific surface, the use of nanoparticles is very effective to increase the shear and mechanical strength parameters of soil. Mashhad city is located on alluvial deposits of Mashhad Plain. A wide area of this city, especially the central and eastern areas where the Imam Reza holy shrine is located, has been built on weak and fine-grained deposits. Considering constructing high-rise buildings such as hotels and commercial complexes in these areas, as well as the need for restructuring the urban decay, the soil improvement will be inevitable. Given the significant application of these nanoparticles, the purpose of this study is to investigate the effects of nanoclay and nanosilica on each other and to find their optimal composition as a suitable alternative for traditional materials to improve the weak and problematic soils. This not only increases the bearing capacity and strength properties but also reduces the cost and time of project implementation.
Method and Materials
To achieve a hybrid with maximum strength and bearing capacity in executable projects, laboratory tests were performed on the soil picked up from the vicinity around Razavi holy shrine in Mashhad mixed with nanoclay and nanosilica. The type of soil is classified as CL-ML based on sieve and hydrometer tests. The nanoclay used in this research is the type of montmorillonite- K10, and the nanosilica is as a powdered shape with 99% purity.
At first, nanoclay and nanosilica were mixed independently with soil in six different weight ratios (0%, 0.1%, 0.5%, 1%, 2.5%, & 5%) and (0%, 0.1%, 0.25%, 0.5%, 0.75%, & 1%). Soil mechanical and strength properties, including compressive and shear strength, settlement, plasticity index, and swelling, were studied by standard laboratory tests on all specimens. After determining the optimum ratio of each nanoparticle, four hybrids consisting of nanosilica and nanoclay were made in four different combinations and then the effects of these four hybrids were investigated on the soil in the laboratory scale (Table 1).
Table 1. Composition of hybrids made with different percentages of nanomaterials
Nanomaterials composition Hybrid Name
5% Nanoclay + 0.25% Nanosilica 5NC + 0.25NS
5% Nanoclay  1% Nanosilica 5NC + 1NS
2.5% Nanoclay + 0.25% Nanosilica 2.5NC + 0.25NS
2.5% Nanoclay + 1% Nanosilica 2.5NC + 1NS
Conclusion
The results of the Atterberg limit test on improved and pure soil indicate that the addition of nanoclay and nanosilica and the optimized ratios of these nanoparticles hybrid to increase the soil resistance parameters did not change the soil swelling index.
Evaluation of shear strength test results showed a significant synergistic effect of these nanoparticles on increasing the shear strength parameters. The nanoparticles hybrid of 2.5% nanosilica and 1% nanosilica increased the cohesion up to 106% and also hybrids of 5% nanosilica and 1% nanosilica increased the internal friction angle of soil up to 32%.
Examination of unconfined compressive strength tests presented a 134% increase in the compressive strength of the specimen improved with 2.5% nanoclay and a 620% increase in soil improved with 1% nanosilica. The optimum hybrid compositions of 5% nanoclay and 1% nanosilica increased significantly the compressive strength of the studied soil up to 785% and reduced the settlement of the soil by 60% compared to pure soil.
  1. Laboratory studies of electron microscopy examination on ​​pure and improved soil samples with nanoparticle hybrid revealed the presence of these particles in pores of the improved soil. On the other hand, the high specific surface area of ​​the nanoparticles increased the interaction of the soil particles, and the effect of adding these nanoparticles on the refining process is observed in compressive strength increase.
As the nanoclay, nanosilica, and hybrid of nanoparticles are the results of soil processing, these particles are very effective to solve the environmental problems because of good compatibility with soil environments. In addition, low volumes of nanoclay, nanosilica, and hybrid in these nanoparticles are necessary to increase the compressive strength and decrease the settlement of soil. Therefore, using these nanoparticles at the project site reduces significantly the cost and execution time of the project.
 
 
Ata Shakeri, Maryam Madadi,
Volume 14, Issue 5 (12-2020)
Abstract

We collected soil samples at 23 sites from the petroleum contaminated soils (PC) in the west of Kermanshah province to investigate the sources and ecological risk of polycyclic aromatic hydrocarbons (PAHs). In this study, source apportionment has been carried out using Positive Matrix Factorization (PMF).The total PAHs concentration, have a mean value of 92.79 mg/kg, ranging from 7.37 to 609.67 mg/kg in PC soil samples. The average abundance order of different PAH ring compounds are 3 rings > 5+6 rings > 4 rings> 2 rings. The ecological risk assessment of PAHs revealed that all of the PAHs levels were higher contents than the effects range low (ERL) value and show higher concentrations than the ERM values, except for Pyr, Chr, BaA, BbF, BkF and BaP in the soil samples. The result of benzo (a) pyrene equation (BaPeq) values indicates that the carcinogenic potency of PAHs should be given more attention due to the impending environmental risk in the study areas. Based on the PMF analysis four sources of PAHs are identified including coal combustion (21.48%), vehicular source (13.74%), unburned petroleum (20.84%) and creosotes (43.92%).Therefore, it was concluded that petroleum activities were major sources of PAHs in west of Kermanshah province.
Habib Shahnazari, Mahmoud Fatemiaghda, Hamid Reza Karami, Mehdi Talkhablou,
Volume 14, Issue 5 (12-2020)
Abstract

The present work is conducted to investigate the effect of texture and carbonate content on internal friction angle of carbonate soils. Carbonate soils are majorly found in the bed of shallow waters and also offshores in tropical regions. Recently there is a huge construction projects including oil and gas extraction platform and facilities, harbors, refineries, huge bridges and other big construction projects in many offshore and onshore areas around the world. One of these area is located on southern part of Iran. We collected soil samples from different parts of northern coasts of Persian Gulf, then the following experiments were performed, carbonate content, three-dimensional grain size, angularity, relative density & direct shear. The results showed that the average of internal friction angle of carbonate soil is higher respect to known silicate sands. This angle is affected by effective grain size, grain angularity, and calcium carbonate content. Based on the experimental results of this study, one of the results was that the internal friction angle of carbonate soils decreases as their effective size of soil aggregates increases.
 


Mr. Seyed Ali Ghaffari, Prof. Amir Hamidi, Dr. Gholamhossein Tavakoli Mehrjardi,
Volume 14, Issue 5 (12-2020)
Abstract

This paper investigates response of triangular shell strip footings situated on the sandy slope. A series of reduced-scale plate load tests were conducted to cover different parameters including three shell footing types with different apex angles in addition to a flat footing, four different distances for strip footings from the crest of the slope namely “edge distance” and reinforcement status (unreinforced and geotextile-reinforced statuses). Bearing capacity of shell footings adjacent to crest of the slope, bearing capacity ratio, shell efficiency factor, influence of apex angle on settlement of footings and the mechanism of slope failure are discussed and evaluated. Also, empirical equations for determination of the maximum bearing capacity of triangular shell strip footings are suggested. As a whole, it has been observed that decrease of shell’s apex angle as good as increase of edge distance could significantly improve the bearing capacity. However, as the edge distance increases, the effect of apex angle on the bearing capacity got decreased. Also, it was found out that the beneficial effect of reinforcement on the bearing capacity decreased with increase of the edge distance. Furthermore, the efficiency of shell footings on bearing capacity was attenuated in reinforced slopes compared to the unreinforced status.
Mr. Mohammad-Emad Mahmoudi-Mehrizi, Prof Ali Ghanbari,
Volume 14, Issue 5 (12-2020)
Abstract

The use of piles, helical anchors and, in general, helical foundations has considerably increased in the last 30 years. The adoption of this technology in the international and domestic codes of each country, as well as in research and studies, and, finally, the publication of numerous books and papers in this area, and the existence of manufacturers’ products, committees, and contractors of this technology has contributed to its expansion and development. However, such methods have progressed at a very slow pace in many countries, especially in developing countries. This paper attempts to assess the global advancement of the helical foundations by reviewing 292 papers from 1990 to 2020 and comparing the related research findings. This will help clarify the issue and determine the scope of technological progress. On the other hand, collecting valuable papers in this area will make it easier for researchers to make further research. Subsequently, the characteristics of this technology are highlighted and the reasons for its lack of progress in the developing countries are addressed. For this purpose, a questionnaire is sent to researchers, developers, designers, and contractors of the geotechnical projects. The purpose of this questionnaire is to specify the type of existing projects, the soil type of project site, the degree of familiarity with the helical foundation technology, the reasons for not using this method and the solutions available to expand and develop this method. Finally, there are suggestions to develop this approach and the issues that need further research.
Zahra Hoseinzadeh, Ebrahim Asghari-Kaljahi, Hadiseh Mansouri,
Volume 15, Issue 2 (9-2021)
Abstract

The soil of the Arvand free zone in the north of Khorramshahr is fine cohesive and cannot be used in earth works. On the other hand, suitable materials for this purpose (coarse-grained soils) are located at the farther distances which a considerable cost requires. In this regard, it is trying to improve the soil with lime and furnace steel slag. This study is focused on improvement of the fine-grained soil by adding various contents of lime and furnace steel slag. For this purpose, after sampling and performance of compaction tests, different amounts of slag (10, 20 and 30% by weight of dry soil) and lime (2, 4 and 6% by weight of dry soil) were added to the soil and after curing for 28 days, the effect of additives on the physical and mechanical properties of soil was investigated by using several tests such as Atterberg limits, compaction, uniaxial compressive strength (UCS) and CBR as soaked and unsoaked. Based on USCS classification the study soil is CL, its plasticity index is about 25% and sulphate ion content is more than 0.5%. Experimental results show that by adding slag and lime at different contents to soil, mechanical properties of soil improve dramatically, so plastic index of soil decreased and UCS and CBR has been increased. Also, the maximum dry unit weight of soil increases and the optimum moisture content decreases. The test results also indicate that the effect of lime on soil is higher than slag and the effect of slag for less than 35% is not considerable, however the test result of unsoaked CBR show that the bearing of soil increase in the more than slag content 20% is significant. According to the previous studies, due to the relatively high sulphate ion content in the soil, the use of lime alone is inappropriate and the slag can only physically improve soil conditions but also chemically prevent the formation of large volume minerals (like Ettringite) by the reaction of lime with soil sulphate ion../files/site1/files/152/%D8%AD%D8%B3%DB%8C%D9%86_%D8%B2%D8%A7%D8%AF%D9%87.pdf
Alireza Sadeghabadi, Ali Noorzad, Amiali Zad,
Volume 15, Issue 2 (9-2021)
Abstract

Expansive soils contain clay minerals such as compacted kaolin which are widespread in nature. Displacements of this type of soils are associated with matric suction and degree of saturation. To determine the in-situ characteristics, necessary measures may be required to deal with the possible failure related to this type of soil. Different constitutive models of unsaturated soils have been considered the subject of many recent researchers (Sheng et al. 2004; Wheeler et al. 2003; Nuth and Laloui 2008; Zhang and Lytton 2009 a, b 2012). However, those constitutive models are generally complicated that are not properly implemented in computer programs for practical applications. The Barcelona Basic Model (BBM) is one of the geomechanical constitutive models to capture the elastoplastic behavior of unsaturated soils../files/site1/files/152/%D8%B5%D8%A7%D8%AF%D9%82_%D8%A2%D8%A8%D8%A7%D8%AF%DB%8C.pdf
Shaham Atashband, Mohsen Sabermahani, Hamidreza Elahi,
Volume 15, Issue 2 (9-2021)
Abstract

In coastal industrial areas, in addition to the presence of loose soil, sulfate attack on soil improvement elements, such as soil-cement, is a double problem. Generally, the use of type V cement is recommended as one of the methods to reduce the detrimental effects. Considering the limited resources of this type of cement, firstly to determin the relationship between the cement content and the strength obtained in sulfated environments is one of the important engineering question in this field and secondly, as an alternative option, the use of type II cement which is more available, is suggested to use in combination with suitable additives. The present study pursues the above two goals by making cylindrical soil-cement specimens with sand, water and Portland sulfate resistant cements. Sodium sulfate is used as the sulfate in soil and water. In the research, first of all, the relation between type V cement content and unconfined compressive strength of soil-cement is obtained at 0% to 5% sulfate concentration, which results in a cement content of 400 kg/m3 completely limited the sulfate attack effects in a sulfate concentration of 2%. Secondly, the combination of type II cement with barium chloride and hydroxide was tested. The related results show that the combination of type II cement with barium chloride and hydroxide had higher strengths, about 2.7 to 3.3 times, respectively (in 362 days), than the soil-cement containing type V cement../files/site1/files/152/%D8%A2%D8%AA%D8%B4_%D8%A8%D9%86%D8%AF.pdf
 
 
, ,
Volume 15, Issue 3 (12-2021)
Abstract

Clayey soils in terms of sharp reduction in strength and swelling ability as a results of water and moisture absorption, it is considered as one of the most problematic soils in civil engineering and construction works. Nowadays, Nano materials such as Nano clay are used to improve and stabilize of clay. On the other side, the increasing volume of municipal waste and residues materials especially debris of building destruction have caused many problems in mega cities such as environmental issues due to incorrect disposal of waste material. Main propose of this research is study of possibility in effecting Nano clay and limestone powder mixture for improve geotechnical properties of Kuye Nasr clayey soil in Tabriz City. In this study, Nano clay and limestone powder in both separate and combined conditions with 5 and 10 percentage are mixed with clay. Curing of stabilized specimens have been performed in 7, 14 and 28 days. For evaluating geotechnical behavior of mixture materials some tests were performed such as Atterberg limits, Compaction, uniaxial strength and direct shear (in 1, 2 and 3 kg/cm2 vertical stress). Results show that the simultaneous effects of 5% Nano clay with 10% limestone powder with 7 days curing period in ambient temperature conditions in clay reduced plasticity index by 72%, improved graining skeleton structure, reduced void ratio of inter grains and increased shear strength by 33%.

./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D8%BA%D9%81%D8%A7%D8%B1%DB%8C.pdf

 
, , Morteza Jiriaei Sharahi,
Volume 15, Issue 4 (12-2021)
Abstract

Soil stabilization and reinforcement has long played an important role in civil engineering, especially in geotechnics, and over time and the need for a more robust and stable ground to withstand gravity and higher shear forces, has become particularly important. Also, in recent years, with the entry of the environment into the construction industry, with the aim of reducing the adverse effects of industrial waste and construction waste on people's living environment and preserving the environment for the future, in many cases reduces the economic costs of projects. In this research, granular soil is reinforced in two loose and semi-dense states using a waste material called ethylene-vinyl acetate (EVA). The experiments were performed without adding moisture, by weight percentage method and using CBR device. The results show that soil resistance increases significantly with the use of these additives and its effect on soil increases with decreasing soil specific gravity. Also, the optimal amount of additives in loose and semi-dense state is 2% additive and 1% additive, respectively.


./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D9%85%D8%A8%D8%B3%D9%88%D8%B7_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C_%D8%B3%D9%87_%D8%B5%D9%81%D8%AD%D9%87_%D8%A7%DB%8C.pdf
Prof. Amir Hamidi, Mr. Mahdi Sobhani, Ms. Farzaneh Rasouli, Ms. Marjan Sadrjamali,
Volume 16, Issue 1 (5-2022)
Abstract

The goal of this study was improvement of sandy soil using a combination of polystyrene foam container waste and Portland cement. For this purpose, Babolsar sand was used as the base soil. Strips of disposable polystyrene foam container waste in “chips” of 50 ´ 5 mm and 50 ´ 10 mm were added to the soil at 0.0%, 0.1%, 0.2% and 0.3% by weight along with 3% Portland cement at a relative density of 70%. All samples were cured for 7 days under saturated conditions and then tested using a large-scale direct shear apparatus. The results showed that, in both cemented and uncemented samples, the addition of foam chips increased the cohesion and internal friction angles, which increased the shear strength of the soil. At higher percentages and using larger-sized foam chips, the shear strength increased even more. In uncemented samples, the stiffness did not change with the addition of foam chips, yet the final dilation of the samples decreased. In cemented samples, both the stiffness and softening behavior after the peak strength point decreased. The final dilation of the cemented samples increased at higher foam chip contents and for the larger sized chips. The results of numerical analysis showed that the use of foam chips increased the safety factor of a slope improved in this manner. It also was found that the foam chips with a lower length-to-width ratio had a greater effect on increasing the safety factor of the tested slopes.
Hossein Sarbaz, Ali Neysari Tabrizi,
Volume 16, Issue 4 (12-2022)
Abstract

In recent years, the use of environmentally friendly microorganisms and biopolymers in geotechnical activities, especially in soil improvement, has received much attention. This is in order to reduce the harmful environmental effects caused by the use of traditional and industrial materials, including cement. Therefore, it seems to be necessary to study the effects of environmentally friendly biopolymers from different points of view, including environmental issues, soil erosion and the factors that influence the geotechnical parameters of the different deposits. The purpose of this article is to review the studies carried out on the use of guar gum. As a green additive from an environmental point of view and the factors that influence the mechanical parameters of soils treated with this biopolymer. The advantages and disadvantages of guar gum from an environmental point of view, as well as the effects of this additive on different soils, are the subject of discussion. Geotechnical parameters such as the unconfined compressive strength, the shear strength, the erosion resistance and the durability of the soils treated with guar gum will be evaluated. The influence of the guar gum parameters in relation to the concentration of the biopolymer guar gum, the moisture conditions, the temperature and the processing time will then be discussed. Finally, the potential opportunities and challenges for the use of guar gum in the geotechnical field will be presented.
 

Aylar Hosniyeh, Dr Rouzbeh Dabiri, Alireza Alizadeh Majdi, Elnaz Sabbagh,
Volume 16, Issue 4 (12-2022)
Abstract

Silty soils containing sodium content, known as salty silty soils, are classified as another type of problematic soil. When this type of soil comes into contact with water, it can swell and diverge, leading to settlement and deformation. Considering that a significant part of the Urmia Lake basin and the Tabriz plain consists of sodium-rich fine soils, the aim of the project is to improve the quality of the soils. Therefore, one of the main objectives of this study is to assess the sediments within the lake bed in order to reduce erosion and to evaluate the possibility of improving and stabilizing the sodium saline silty soils in the area using the geopolymerization technique. To achieve this, pumice material with pozzolanic properties was separately mixed with the soil under investigation at weight percentages of 3%, 5% and 7%, together with a calcium hydroxide solution as a catalyst at concentrations of 2%, 5% and 7%. The samples were then cured for one day. Laboratory tests, including compaction, uniaxial compressive strength, direct shear, and consolidation, were carried out to evaluate the geotechnical behavior of the improved soil. The results obtained indicate that the combination of 3% pumice with 2% calcium hydroxide increased the uniaxial compressive strength of the stabilized sample by 1.32 times after one day of curing. In addition, the mixture of 7% pumice with 2% calcium hydroxide significantly improved the internal friction angle by 20 times. Finally, the combination of 7% pumice with 2% calcium hydroxide reduced the value of free swelling potential by up to 86%.
 

Dr. Ehsan Pegah,
Volume 17, Issue 1 (3-2023)
Abstract

The ratios of elastic shear stiffness anisotropy and fabric anisotropy in granular soils are of very important characteristics in soil mechanics, which can influence directly lots of geotechnical engineering attributes. The shear stiffness anisotropy in a soil mass is directly related to the soil fabric anisotropy, which in turn has a fundamental contribution in variations model of shear stiffness anisotropy ratio. The main objective of this study is to evaluate the variations ranges of shear stiffness and fabric anisotropy ratios in granular soils by developing a novel approach for estimating fabric anisotropy ratio from soil grading and particles shape properties. By presuming cross-anisotropy, the anisotropic shear stiffness values of 1042 conducted tests on 200 distinct sandy and gravelly soil specimens from 43 various soil types of diverse sites throughout the world were acquired from literature. Those were then integrated with their associated void ratios, stress conditions, grading parameters and particles shape specifications to produce a comprehensive database of anisotropic shear moduli with respect to testing conditions. The collected data were analyzed, from which the shear stiffness and fabric anisotropy ratios could be calculated for examined geomaterials. The resulting values for fabric anisotropy ratio were then depicted versus grading and particles shape information to inspect the level of dependences through deriving the respective correlations. The findings of this study may serve as a suitable technique to obtain first-order approximations for fabric and shear stiffness anisotropies from soil grading and particles shape characteristics.
 

Ehsan Pegah,
Volume 17, Issue 2 (9-2023)
Abstract

The ratios of elastic anisotropy in cohesionless soils are always of substantial importance in respective analyses to the geotechnical and geological engineering projects. These ratios are raising from the available discrepancies in anisotropic elastic parameters ascribed to the different directions and planes of soil mass. The major objective of this study is to recognize the variations range of anisotropy ratios resulting from anisotropic shear and Young’s moduli for a variety of cohesionless soils followed by assessing the potential relations among these two anisotropies. To this end, by assuming the transversely isotropy in cohesionless soils, the anisotropic elastic constants from 266 conducted laboratory tests on 37 various soil specimens relating to 10 different sands were derived from conventional triaxial and seismic waves laboratory tests coupled with the numerical testing results in literature. By sorting the collected data and subsequently their analyses, at the first stage, the values of shear and Young’s moduli anisotropy ratios were calculated for the studied soils. Furthermore, by plotting the anisotropy ratios in several joint panels and performing a series of regression analyses on the resulting values, the possible dependencies were inspected between these two anisotropies. At last, the indicative equations among shear and Young’s moduli anisotropies were developed with insistence on use of which instead of the former similar relations in literature. 

Dr Masoud Amelsakhi, Eng Elham Tehrani,
Volume 17, Issue 4 (12-2023)
Abstract

This research is a laboratory study to improve the geotechnical properties of sandy soils. Concrete waste with a grain size of 1.2 to 1 inch was used for this purpose. The effect of using concrete waste at 0, 10, 20 and 30 weight percent on dry sandy soil in two loose and dense states was investigated. Based on the results of the direct cutting test, the addition of concrete waste has increased the shear strength and the internal friction angle of the soil; The loose samples made with ٪30 of concrete waste had the greatest effect, so adding ٪30 of concrete waste to loose sand increased the internal friction angle of the soil by ٪32 and the shear strength by ٪42 Similarly, adding ٪10 of concrete waste to dense sand increased the internal angle of friction of the soil by ٪4 and the shear strength by ٪6.


Page 3 from 4     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb