Dear users,
This is our new website
(we are launching the new one in order to improve our communication and provide better services to the editors and authors. So we will upload all data soon).


Please click here to visit our current website, and also to submit your paper
:
 
www.ijsom.com 


 Thanks for your patience during relocation.

Feel free to contact us via info@ijsom.com and ijsom.info@gmail.com

   [Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing Databases

AWT IMAGE
AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

..
:: Search published articles ::
Showing 2 results for Particle Swarm Optimization

Ellips Masehian, Vahid Eghbal Akhlaghi, Hossein Akbaripour, Davoud Sedighizadeh,
Volume 2, Issue 1 (5-2015)
Abstract

Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identify the most proper PSO for solving different optimization problems. Algorithms are classified according to aspects like particle, variable, process, and swarm. After integrating different acquirable information and forming the knowledge base of the ES consisting 100 rules, the system is able to logically evaluate all the algorithms and report the most appropriate PSO-based approach based on interactions with users, referral to knowledge base and necessary inferences via user interface. In order to examine the validity and efficiency of the system, a comparison is made between the system outputs against the algorithms proposed by newly published articles. The result of this comparison showed that the proposed ES can be considered as a proper tool for finding an appropriate PSO variant that matches the application under consideration.
Ali Akbar Hasani,
Volume 3, Issue 3 (11-2016)
Abstract

In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.

Page 1 from 1     

International Journal of Supply and Operations Management International Journal of Supply and Operations Management
Persian site map - English site map - Created in 0.08 seconds with 30 queries by YEKTAWEB 4665