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Abstract

The main purpose of this article is to present an approximate solution for the two-
dimensional nonlinear Volterra integral equations using Legendre orthogonal polynomials.
First, the two-dimensional shifted Legendre orthogonal polynomials are defined and the
properties of these polynomials are presented. The operational matrix of integration and the
product operational matrix are introduced. These properties together with the Gauss-
Legendre nodes are then utilized to transform the given integral equation to the solution of
nonlinear algebraic equations. Also, an estimation of the error is presented. Illustrative

examples are included to demonstrate the validity and applicability of the new technique.

1. Introduction

The second kind of two-dimensional (2D) integral equations may arise from some
problems of nonhomogeneous elasticity and electrostatics. All the mixed boundary
value problems in the theory of elasticity for an inhomogeneous elastic half-space
whose elastic modulus is a power function of the depth can be reduced to such an
integral equation [1]. Dobner presented an equivalent formulation of the Dorboux
problem as a 2D Volterra integral equation [2]. Also, 2D integral equations may arise in
contact problems for bodies with complex properties [3-4]. We can also see this kind of
equation in the theory of radio wave propagation, including three-dimensional local

inhomogeneities [5], and in the theory of the elastic problem of axial translation of a
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rigid elliptical disc-inclusion [6], and various physical, mechanical and biological
problems.

There are many works on developing and analyzing numerical methods for solving
the 1D integral equations of the second kind [7-11]. But little work has been done to
solve the 2D cases. The papers [12-15] are mainly concerned with numerical solution
for linear 2D integral equations. Beltyukov and Kuznechikhina [16], proposed a class of
explicit Rung-Kutta-type methods of order 3 for the solution of 2D nonlinear Volterra
integral equations. Guaqiang et al. [17] introduced extrapolation method of iterated
collocation solution for 2D nonlinear Volterra integral equation. The papers [18-19]
applied the 2D differential transform for solving the 2D nonlinear Volterra integral
equations. In [20], He's variational iteration method for solving nonlinear mixed
Volterra-Fredholm integral equations was presented. In [21], 2D triangular functions
was applied for the 2D Volterra-Fredholm integral equations. Also, Babolian et al. [22]
have considered the use of the rationalized Haar functions for the numerical solution of
nonlinear 2D integral equations.

In this paper, we consider the 2D nonlinear Volterra integral equations of the second
kind

t rx
u(x,t) = f(x,t) +f0 J; K(x,t,y,2)9(v,z,u(y,z))dy dz, D

where u(x,t) is an unknown function, f(x,t)is a continuous function defined on
[0,1] x [0,1] and K(x,t,y,z) and g(y,zu(y,z)) are continuous functions, with g
nonlinear in u.

We assume that the Eq. (1) has a unique solution u(x, t) and will be found by an
approximate solution using the properties of the 2D shifted Legendre orthogonal
polynomials.

The outline of this paper is as follows: In Section 2, we discuss how to approximate
two variable functions in terms of 2D shifted Legendre orthogonal functions and the
operational matrix of integration and the product operational matrix are introduced. In

Section 3, we give an approximate solution for (1). In Section 4, an estimation of the
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error is presented. Numerical examples are given in Section 5 to illustrate the accuracy

of our method. Finally, concluding remarks are given in Section 6.

2. Properties of 2D shifted Legendre polynomials

2.1 2D shifted Legendre polynomials
The 2D shifted Legendre polynomials are defined on [0,1] X [0,1] as

I;Umn(x: t) = pm(zx - 1)pn(2t - 1)! mln = 051121 )
and are orthogonal with respect to weight function w(x,t) = 1 such that
trt ! i=mj=n
[ [ 6 0 0015, 0) dxde = {GmF Dzn T 1) T @
0 -0 0, otherwise.

Here, p,, and p,, are the well-known Legendre polynomials, respectively of order m
and n which are defined on the interval [—1,1] and satisfy the following recursive

formula [23]:

pO(x) = 1!
pl(x) =X, ) 1
m + m
pm+1(x) = m+1 xpm(x) _m_Hpm—l(x); m =123,

2.2 Function approximation
A function u(x, t) defined on [0,1] X [0,1] may be expanded as
UEO =D ) Cnntbmn ), ©)

m=0n=0

where

o )
m (wmn' wmn)’

in which (.,.) denotes the inner product.

If the infinite series in (3) is truncated, then (3) can be written as

N N
UEOZ ) ot = CTU(x,D),

m=0n=0

where C and Y (x,t) are (N + 1)(N + 1) X 1 vectors respectively given by

_ T
C = [co0, €01, ***» Con» €10, €115 " » C1Ns " CNO»CN1 """ CNn ] %)
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P, 1) = [Poo(x, 1), -, Pon (6, 1), P10(x, 1), -+, han (6, 0), Yo, 8) =, Py (x, 17 (5)

2.3 Operational matrix of integration
The integration of the vector Y (x, t) defined in (5) can be approximated by

t X
f f WO, B)dx'de’ = Qun t) = (P ® P)p(x, b), 6)
0 Y0

where Q is the (N + 1)? X (N + 1)? operational matrix of integration, such that P is
the(N + 1) X (N + 1) operational matrix of Legendre polynomials defined on [0,1] as
follows [24]:

1 1 0 0 0 0 0
! 0 ! 0 0 0 0

3 3
0 ! 0 ! 0 0 0

p—1 5 5
2 : : : : :
0 0 0 O ! 0 !
2N-—-1 2N -1
1
| 0 0 0 0 .. 0 TN+ 1

In (6), ® denotes the Kronecker product defined for two arbitrary matrices A and B as
[25]

A® B = (a;;B).

2.4 The product operational matrix
The following property of the product of two vectors (x, t) and T (x,t) will also be
used. Let

W, YT, C = Cplx,b), (7
where C is defined by (4) and C is a (N + 1)? X (N + 1)? product operational matrix.
We have
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Mz
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Y(x, YT (x,t)C = cijij(x, )14 (x, t)

Cl]lpl] (x, )Py (x, t)

M=
Mz

,..
1]

o
-
1]

o

Cl]lpl] (x, t)leO (x,t)

Mz

Cl]l)bl] (x, )Py (x, t)
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We put:

i+k j+l

Yoy Co OB (o) = D anstbys i), ®

r=0s=0
and obtain the coefficients a,; by the following manner.
Multiplying both sides of the Eq. (8) by ¥,,,(x,t),m,n = 1,2,---, N and integrating the

result from 0 to1, yield
i+k J+l

[ 0o 0 1t = PR [ s im0,

r=0s=

and using the Eq. (2) we obtain

amn
[ ] s a0 e =

therefore
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1,1
amn = @m+ D@+ D [ [ P00 Opn . Ot
o Jo
=02m+1)(2n + 1)f pi(2x — Dp,2x — Dp,,,(2x — 1) dxf p;j(2t — Dp, (2t — Dp, (2t — 1) dt.
0 0

Now suppose

1
Wi gem = f pi2x — Dp, 2x — Vp,,2x — 1) dx, i,k,m=0,1,---,N,
0

where w; x ,, can be computed easily [26], so we get
Apn = Cm + 121 + Dw; g mj i n-

Substituting a,,, into the Eq. (8) we have
i+k J+l

P (6, P (x, ) = Z Z(Zm + D2+ Dw; g m@j i nPmn (X, ).

m=0n=0
If we retain only the elements of (x, t) in the Eq. (5), then the matrix C in the Eq. (7)
is obtained as
c=[c,], ij=01-N, ©)

where in the Eq. (9), C;;, i,j = 0,1,+++,N are (N + 1) X (N + 1) matrices given by

j’
N
€= +1) Z An®ijm  5j=01,,N,
n=0
and 4;,j =0,1,---,N are (N + 1) X (N + 1) matrices as

N
[Aj]kl = (Zl + 1) Z ijwk'l'm, k,l = 0,1,...’N.

m=0

To illustrate the matrix C we choose N = 2 and get

_ _ _ A Aq A,
I ZA; Ag+=A —A
C=|Cp C11 Cp|=]|3"" 07 572 371
C c ¢ 1 2 2
20 L21 (22 EAZ §A1 Ay + 5142
where
Cio Ci1 Ci2
1 4 2 2
A, =|36 CoTEh2 3 o012
1 2 2
T Ciz T Ci1 Cio T 7 Ciz

3. Solution of the 2D nonlinear Volterra integral equation

Consider 2D Volterra integral equation as
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t rx
ux,t) = f(x,t) +f f K(x,t,v, z)g(y, Z,u(y,z))dy dz.
0 Jo

Suppose that
G(x,t) = g(x, t,u(x, t)),

we approximate G (x, t)and K (x, t, y, z) respectively as

Gy(x,t) = GTY(x, b)),
Kn(x,t,y,2) = K" (x, )Y (¥, 2),
where
G = [goo, Jo1,**» Jon» J10: "> Gin»**» Inos > Gnn]Ts
K(x,t)

(10)

(11

(12)
(13)

= [koo(x, ), ko1 (x, 1), -+, kon (x, £), kyo (x, £), -+ ke (x, £), -+ ko (x, £), -+, ey (x, )17,

so that

1 r1
kij(x,t) = Qi+ 1)(2j + l)f f K(x,t,y,2)¢;;(y,2)dydz, i,j=01,-,N,
0 Jo

and g;;,i,j = 0,1,---, N, are unknown 2D shifted Legendre polynomials coefficients.

From the Eqgs. (11)-(13) we obtain
t rx
unC,0 = f 0+ [ | KT Ow0, 97 (0,.2) Gy
0 Y0

Let -
I0nt) = f f KT (x, %y, 2007 (7, 2) Gdydz,
0 Y0

then using the Egs. (7) and (6) we have

I(x,t) = KT(x,)GQy(x, t).
Substituting the Eq. (15) into the Eq. (14) we obtain

uy(x,t) = f(x, t) + KT (x, )Gy (x, t).
Now from the Egs. (11), (12) and (16) we have
g(x, t,fx,t) + KT (x, )Gy (x, t)) = GTy(x, ).
We collocate the Eq. (17) at (N + 1)? points (x;, t;), i,j = 1,2,--,N + 1, as
g (xl-, tj,f(xl-, tj) + KT(xi, tj)5Q¢(xi, tj)) = GTIIJ(Xi, tj),

(14)

(15)

(16)

(17)

(18)

where x; and t; are the shifted Gauss-Legendre nodes (zeros of thepy 1 (2x — 1)).
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The Egs. (18) give (N + 1)? nonlinear equations which can be solved for the

elements of G using the well known Newton's iterative method. Substituting G into the

ty(x, t) = f(x, t) + <f JxK(x, t,v,2)PT(y, z)dydz) G
0 Jo

we find iy (x, t) as an approximate solution for the Eq. (10).

4. Estimation of the error
In this section, we analyze the error when a sufficeintly smooth function is expanded
in terms of 2D shifted Legendre functions. Then an estimation of the error for the
numerical method presented in the previous section is found assuming that G(x,t)
defined by (11) is a sufficiently smooth function.
We assume that f(x,t) is a sufficiently smooth function on 2 = [0,1] X [0,1], then

there are real numbers M;, M, and M5, such that

6N+1f(x,t)
—_— | <
5% |G 1= My
aN+1 x,t
Ll S MZ'

(arc%?é(n JtN+1
62N+2f(x t)
(xt)efl dxN+1ggh+1 | < Ms.

Suppose that py(x,t) is the interpolating polynomial to f(x,t)at points (xl-, tj), i,j=
0,1,-+,N, where x;,{ =0,1,---,N and t;,j = 0,1,-+,N are roots of degree- (N + 1)

shifted Chebyshev polynomial in [0,1], then we have [27]

INVFLE(E £) N ONtIf(x,m)
flx,t) —py(x,t) = mnl O —x) + e AtNtL(N + 1)! 1_[ (t

N2 f (&)
T OXNTLGEN L[N + D12 1_[ (- x)r_jzo(t_tf)’

such that, &,1,&',n' € [0,1]. We get

M, N
G ) = pu(x )] < (N+1)'|1_L RO | G
M,
+[(N+1)']2 x)”l_[ (t=5))

and using the minmax theorem, we have

£ G0 0) = pu( ] < it S b
fat) =pnte Dl = Gyt Y vy v T Dezeer

Therefore, we obtain
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If (e, ©) = p(x, D] < W‘ZZZN“' (19)
Mg

where a = M1 +M2 +W.

Theorem 1: Let fy(x,t) = Fy 1 (x,t), be the 2D shifted Legendre functions expansion

of the real sufficiently smooth function f(x, t) in £, where

Fy = [foo»fop""fozv:fm:"';f1N""'fN0;"',fNN]T,
and f,,, m,n =0,1,---, N is defined by

1 1
fn = 2m + 1)(2n + 1)] f fx, ), (x t)dxdt,
0 Jo
then there is a real number a such that
a
x,t) — x,t K——v
”f( ) fN( )”2 (N + 1)' 22N+1
Moreover, if Fy = [}_‘00,}_‘01,---,]_CON,]_‘m,---,le,---,fNO,n-,}_‘NN]T be an approximation
for the 2D shifted Legendre functions coefficients vector Fy and fy(x,t) = FNTlp(x, t),

then there is a real number £ such that
|f G t) = fulx, t)||2 Sm‘lrﬂllﬂv—ﬁw”z- (20)

Proof. By using definition of the best approximation [28] fy(x, t) to f(x,t), we have

If (. t) = fn G Ollz < Nlf (x, 8) — g (x, D)2,
where, qy(x, t) is any arbitrary two-variate polynomial of degree less than or equal to

N in variable x and t. Then, using (19) we get

1 1

1FCo ) = fu G DIl = f f 1 Go ©) — f Cr, ©) Pt
0 0
1 1

sfo L|f(x,t)—pN(x,t)|2dxdt

< (W)Z (2 1)

Taking the 2th root from the both sides of (21) gives
If G, 0) = fu @ Dlz < Gy (22)

To prove (20), we write
If e 0) = fu e |, < IF G 6) = fuCe Ol + || fu(e ) = fu e )], (23)
Also, we have

~ 5 1 1 ~ ,
0G0 = Aol = [ [ 10 = fute 0 axa
0 J0

203


https://system.khu.ac.ir/jsci/article-1-1460-fa.html

[ Downloaded from system.khu.ac.ir on 2024-05-19 ]

Numerical solution of two-dimensional nonlinear Volterra integral ... S. Nemati, Y. Ordokhani

1 Zizoz:zo(fmn = forn JWon (x, t)‘2 dxdt

<| 1 | 1 3 ol Y Y Wl dxat
S Sl S [tcorns
= 1= Fl S WmGol?

< 6_4”FN - FN”Z . (24)

Taking the 2th root from the both sides of (24) gives
2
_ s -
[Ifv(x, ) = fu(x, 0|, < 5 I1Fv = Fullz. (25)

Finally, from (22), (23) and (25), we obtain
If (. 0) = fu(x 0|, <

< m + BlIFy — Fyll2

TL’Z
where g = e

From the Eqs.(10) and (11) we have the exact solution as

t rx
ulx,t) =f(xt)+ f f K(x,t,v,2)G(y,z)dy dz, (26)
0 Y0

and the approximate solution is as

t rx
fiy(x,t) = f(x,t) +f f K(x,t,y,2)Gy(v,2)dy dz, 27)
0“0

where Gy (y,2) = Gy ¥(x,t) and Gy is the computed vector obtained by the method
presented in the previous section.
Subtracting (27) from (26), we obtain

t X
lu(x, €) — i (x, )] = ] f K(x,t,y,2)(G(,2) — Gy (y,2))dydz
0 0

1
K(x, t,y,2)(G(y,2) — Gy(y,2))dydz

<
(xtyz)E(!Zx.Q)lK(x t y'z)lf f 1G(y,2) - GN(y'Z)ldy dz.

The function K (x, t, y, z) is a continuous function in £2 X {2, so there is a real number M
such that

(x, tyz)e(nxn)lK(x Ly, 2l <M,
therefore, using Schwarz inequality and Theorem 1, we get
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1

1,1 _ 2
luCx,t) — iy (x, ) < M <f f 1G(y,2) — Gy (v, 2)|?dy dZ>
0 Yo

= M||G(x,t) — Gy(x, D]l

'y —
Sm+“llGN_GN||2; (28)
where
NGt CAMNEE))
Y = M(max(x,t)eﬂ | 9N | + maXxy nen | 9N+ | +
PN *26(x0)

1
(N+1)122N+1 maX(x,t)E.Q | N +1gN+1 |)»

2
andu=M%.

Finally, using (28) we have

lulx,t) =y Ol < +ullGy = Gyll2.

14
(N + 1)1 22V+1

5. Illustrative examples

In this section, three numerical examples are included to demonstrate the validity and
applicability of the proposed technique. In order to demonstrate the error of the method,
we introduce the notation:

en(x,t) = lulx, t) — iy (x, O], (x,8) € [0,1] x [0,1],
where u(x, t) and iy (x, t) are the exact and approximate solutions respectively.

Example 5.1. Consider a nonlinear 2D Volterra integral equation of the form [19]

1 1 1 trx
u(x,t) = x?et + —x7 ——x7e? ——x5t + f J (v? + e ?Hu?(y, z)dydz, (29)
14° " 14 5 )

with the exact solution u(x, t) = x2et.

We applied the method presented in this paper and solved the Eq. (29). Numerical
results are presented in Table 1 and Figure 1. Table 1 shows the error ey (x, t) at some
points together with the results obtained by the method of [19]. It shows that by
increasingN, the accuracy of the solution increases and the presented method is more
accurate than the method of [19] for the 2D Volterra integral equations by using 2D

differential transform.
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Table 1. The absolute error ey (x, t) at some points for Example 5.1.

Present Method Present Method Present Method Method of [19]

. 0) with N = 4 with N = 6 with N = 8 with N = 10
(0.1,0.7) 2.58615x107"° 24912x107"° | 4.1823x107"® | 5.2589 x107"
(0.2,0.3) 1.7163x107"° 1.3565x107"" | 25110 107 | 1.82059 x107"°
(0.3,0.9) 2.5287 x107° 3.2264x107" | 7.8045x107 | 7.6453 x107"°
0.4,1) 1.5986x107"° 5.9868 x107' 2.4096 x107"7 | 43700 x10°°
(0.5,0.8) 2.0342 x1077 3.0919x10™"" | 2.4013x10™"% | 5.7619 x107"°
(0.6,1) 5.0704 x107"° 2.9434 107 | 2.0193x107"* | 9.8325x10”°
(0.7,0.6) 1.0426 x10°° 1.0777 x10~° 6.9357 x107"* | 4.6869 x107"
0.8,1) 41502 x107° 3.7477 x107"° 1.2102x107" 1.7480 x 107
(0.9,0.5) 1.0227 x107° 4.4669 x107* 1.2249x107" 1.0337 x107"
(1,1) 3.9974x107* 3.4360 x107"% | 5.8841x107" 2.7312x107°

Figure 1. Graph of the ey (x,t) with N = 4,8 for Example 5.1.

Example 5.2. Consider the nonlinear 2D Volterra integral equation [22]

t X
u(x,t) = f(x,t) +J f (xy? + cos(2))u?(y, z)dy dz,
0 Jo

where

1
f(x,t) = xsin(t) (1 - axzsinz(t)>

and has the exact solution u(x, t) = x sin (t).

1 1
+—x° (—sm(Zt) —t

2

(30)

The proposed method was applied to approximate the solution of the Eq. (30). Table

2 shows the error ey(x,t) at some points together with the results obtained by the

method of [22] using 2D Haar functions.

Example 5.3. Consider the following 2D nonlinear Volterra integral equation

t rx
u(x,t) = (x +t)(e¥ + et —e**) + f f (x + )e*YAdydz,
0 Jo
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where the exact solution is u(x,t) = x + t. Table 3 and Figure 2 illustrate the numerical

results for this example.

Table 2: Numerical results for Example 5.2.

11 Present Method Present Method Method of [22]
6t =GroD | with N = 4 with N = 8 with m = 32
=1 5.5 x 1077 6.7 x 10712 1.4 x 1072
=2 5.8 x 1078 1.8 x 10713 7.9 x 1073
=3 9.1 x 10710 1.2 x 10714 41x1073
l=4 6.1 x 10710 1.1x 10715 2.2 %1073
=5 9.5 x 10~11 3.9 x 10716 1.2 x 1073
l=6 1.5x 10711 9.7 x 10~ 9.3 x107°
Table 3: Numerical results for Example 5.3.

(x,t)z(%,%) N=2 N=4 N=8 N =16

=1 1.2x 1073 | 2.31x10° | 1.6 x 10712 | 4.4x10"®

=2 3.8%x 107° | 4.2x107 | 7.8 x 1071* | 5.5x10"

=3 42 %1075 | 1.1x10° | 1.0 x 1014 | 2.7x107"

=4 8.7 %1076 | 1.5x10° | 1.1 x 107 | 2.7x10™"

=5 1.3x 1076 | 3.7x10° | 1.2 x 10715 | 2.1x10™"”

=6 1.8x 1077 | 6.1x10"° | 6.3 x 10716 | 3.4x10™®

6.x1076
6
4.%10 A gy W 1.0
LT TN
21076 ST Q.i,"

o s /
P e S
Y ey S

AT AL T 4
R

2 A
iy s )
o ) - [

Figure 2. Graph of the ey (x,t) with N = 2,4,8,16 for Example 5.3.
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6. Conclusion

In this paper, we presented a highly accurate method to solve the 2D nonlinear
Volterra integral equations. The properties of the 2D shifted Legendre orthogonal
polynomials together with the Gauss-Legendre nodes were used to transform the given
problem to the solution of non-linear algebraic equations. It should be Noted that the
final nonlinear equations were solved using the Newton's iterative method. We applied
the presented method on three test problems and compared the results with their exact
solution in order to demonstrate the validity and applicability of the method. The results
obtained by the technique in the current paper were more accurate than the results

reported with other methods.
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