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Abstract

An expansion method based on block-pulse functions is developed to find the numerical
solution of two-dimensional linear Volterra and Fredholm integral equations of the first and
second kind. The present work is based on introducing a family of operational matrices of
integration. Error analysis is worked out that shows efficiency and accuracy of the proposed

method. Also, some numerical examples are presented.

1. Introduction
Many problems in engineering and mechanics can be transformed into two-
dimensional integral equations. For example, it is usually required to solve Fredholm
integral equations (FIE) in the calculation of plasma physics [1]. Graham [2] illustrated
an application of two-dimensional FIEs in the solution of a problem which arises in
electrical engineering. McKee et al. [3] reduced a class of nonlinear telegraph equations
to two-dimensional Volterra integral equations (VIE). Some other applications of two-

dimensional integral equations can be found in [3, 4].

While the numerical analysis of one-dimensional integral equations is well
developed (see, for example, [5-8] and references therein), the numerical methods for
two-dimensional integral equations seem to have been discussed in only a few places

(see [2-4], [9-17]).
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However, during the last 20 years, significant progress in this area has been made.
Brunner and Kauthen introduced in [11] collocation and iterated collocation methods
for the solution of two-dimensional linear VIE. They presented an analysis of global
and local convergence properties of these methods, and derived results on attainable
orders of global convergence and local superconvergence. Brunner extended this study
to the case of nonlinear VIE [12].

Important contributions to this field can be also found in the works of Guogiang Han
and his co-authors. They obtained asymptotic error expansions for different classical
methods, when applied to two-dimensional integral equations, and used them as a basis
to introduce extrapolation algorithms. In [13], they used this approach to analyze the
solution of linear VFIE by the Nystrom trapezoidal method. In [14] and [15], the
iterated collocation method was applied to the solution of nonlinear VIE. Nonlinear FIE
have been considered in [16] and [17], where these equations were solved, respectively,
by the Nystrom and the iterated Galerkin methods.

Computational methods based on the application of different sets of basis functions
have become a very common tool for the solution of different kinds of functional
equations, including integral ones. In particular, we are interested here in the use of the
block-pulse functions (BPFs).

Of all piecewise constant block functions, the BPF turned out to be the most
fundamental and its qualitative as well as quantitative appraisal is presented by Deb et
al. [18]. The most striking feature of this function set is its piecewise constant nature.
They have been applied as a useful tool in the analysis [19, 20], synthesis [21],
identification and other problems of control and systems science [22].

An interesting property of the BPFs, which makes them attractive from the
computational point of view, is that the computation of integrals of such functions is
very easy. Therefore, when solving numerically differential or integral equations, the
use of a basis of BPFs is very advantageous, when compared with other basis of

orthogonal functions.
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In this paper, we consider the m-set {¢, ) 1";1 of BPFs on interval [0,1) and
introduce a family of operational matrices of integration corresponding to this set so that
the operational matrix of integration introduced in [23] is a member of this family.
Then, using this family of operational matrices, we derive a family of operational
matrices of integration corresponding to the product-set {¢:(r1).¢;(z2) 7';0 of BPFs,
defined on [0,1)X[0,1).

It is shown that the two-dimensional VIEs of the first and second kind can be
reduced to lower triangular linear systems of equations that can be solved directly by
forward substitution method. The two-dimensional FIEs of the first and second kind is
also reduced to linear systems of equations, but in these cases the coefficients matrices
of the obtained linear systems are full.

The paper is organized as follows. After an introduction to the present work, a
review of block-pulse functions is provided in Section 2. In Section 3, we define a
product-set of BPFs and extend the results of Section 2 to this set. Then, in Section 4,
we analyze the error representation when a differentiable function is expanded in terms
of BPFs and give some bounds on the errors. The numerical method which reduces the
two-dimensional Volterra and Fredholm integral equations to linear systems of
equations is proposed in Section 5. Some numerical examples are presented in Section 6
to demonstrate the efficiency and accuracy of the method. Finally, in Section 7 we
discuss on conditioning of the linear systems obtained in Section 6 and analyze the

numerical results reported in the tables.

2. Review of block-pulse functions
Block-pulse functions have been widely used for solving different problems [5, 24].
A complete description of these functions is given in [20, 25]. In this section, we briefly

review this class of functions.

2.1. Definition and properties

An m-set of BPFs over the interval [0, T) is defined as
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1, ih<t<(i+1)h, )
¢ (t)_{O, otherwise,

where i=0,1,..,m—1, h=T/m and m is a positive integer number. The function

@ (¢) is called the ith BPF.

Without loss of generality consider 7 =1, so A =1/m. By definition (1), it is clear
that
[odi=h  i=0l..m-1. )

Among various properties of BPFs, the most important ones are disjointness,

orthogonality and completeness. From the definition of BPFs, we have

009, (0={00 121 G
Where i, j =0,1,...,m —1. This property is known as disjointness of BPFs.
Using (2) and disjointness property, we obtain

[[ 0.6, =155 )
where i, j=0,1,.,m—1 and 0; is the Kronecker delta. So, all the BPFs ¢ (r) are

orthogonal to each other.

The other property is completeness. For an arbitrary function f in L*([0,1)), when
m approaches infinity, Parseval’s identity holds as follows

[ r2war= ool .

where

_Ip 5
fi=- L £ (t)dt. (5)

2.2. Function approximation and operational matrix

A function f(t) in L*([0,1)) may be expanded in terms of BPFs as

[ =@ (OF, (6)
where

F=[fo, fisee, fu1', )
with fis as defined in (5) and

D(1) = [P0 (1), A (1)sers Pra ()] ®)

Now, let £ be a value on (0,1) and approximate ¢—ih, for all values

te [ih,(i+1Dh), by &h. The integral J.;(/),-(T)df can be approximated in terms of BPFs

as
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Lt o (t)dr = h[0,0,...,&,1,...,1]P(1), )

in which € is the ith component. Therefore,

JZCI)(r)dr = POD(7), (10)

where
e 1 1 1
0 € 1 1
P9=H0 0 ¢ 1 (1)

0O 0 O

mxXm

The upper triangular matrix P’ performs as an integrator and for a function f in

L*([0,1)), we have
j; ()t = F'POd(r), (12)
where F' is the vector of BPF coefficients of function f defined by (7). We call

{P“) (€€ (0,1)} as a family of operational matrices of integration corresponding to the

set {¢i (t)}::)l. We note that the operational matrix of integration presented in [23] is a

member of this family when € =1/2.

3. Operational matrices of integration corresponding

to a product-set of block-pulse functions
Let {¢, (t)}g)1 be an m-set of BPFs defined on interval [0,1) and put D =[0,1)x[0,1).
We define the product-set {#; (t)}f;o of BPFs on D as
@i (t) = @i (1), (12), (13)
where t = (t1,12). Using a similar argument to that employed for the set {#i (1)}, we

can show that the product-set {; (t)}Z’;O is also disjoint, orthogonal and complete. So,

any function of two variables f(t) in L*(D) can be expanded as

f) =¥ (b)F, (14)
where

Y(t)=D(h) Q@ D(t2), (15)
and

F =[fo0, forseees fomtvees frnot0s it seees frotmet | - (16)

In (15), ® denotes the Kronecker product. The block-pulse coefficients f; in (16)

are given by
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1 ¢ pt ..
ﬁj:h—zj.oj.of(t)@-j(t)dt, i,j=0]1,.,m—1, (17)

where dt =dnh.dt: and h=1/m.
Similarly, any function k(t,y) in L*(Dx D) can be expanded in terms of BPFs as

k(t,y) =¥ (OK¥(y), (18)
where K is a block matrix of the form
K=[K"“""L, (19)
in which
K" =[kig 1"y, i,j=0L....m—1, (20)

and the block-pulse coefficients kij, are given by

_ 1 plerplpl 71
ki = [ | [ K991 03, () dedy. @
By disjointness property of the set {g; (t) :”j_:lo, we obtain
()P’ (t) = diag (F(1)), Y)W (t)V = 1% Y(t), (22)

where V is a column vector of order m’ and X} =diag(V). Moreover, it can be
easily concluded that for any m* xm* matrix B
Y (t)B¥(t) = B ¥(t), (23)

where B is a column vector whose elements are the diagonal entries of matrix B .
Similar to the one-dimensional case in Section 2, we can obtain a family of

operational matrices of integration in order to approximately integrate functions of two

variables. For this purpose, let € be a value on (0,1) . Also, for any integrable function

f over domain D, consider the notation

reodr= (" fr.0)dndr (24)
Iof‘l’ T-—Jojof 1, T2)dTdTs.
By computing J.Ot @;(y)dy , for i, j =0,1,....m—1, using the approximate relation (10),
we obtain
t
[ ¥y = PO (), (25)

where P,* is the m”> xm”> block upper triangular matrix
P =P ®PY (26)

in which P is the mxm upper triangular operational matrix defined by (11). Thus

P,® performs as an integrator and for a function f(t) of two variables, using (14) and
(25), we have
[} fdy = F'Rwa), @7)
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where F is the vector of BPF coefficients of function f defined by (16). We call

{PO(S) €€ (O,l)} as a family of operational matrices of integration corresponding to the
product-set {g; (t)}f_;io of BPFs defined on D.

4. The estimation of the error
In this section, we analyze the error representation when a differentiable function is

expanded in terms of BPFs and give some bounds on the error.

Theorem 4.1. Let f,,(x) = ®'(x)F., be the BPF expansion of the real differentiable
function f(x) on [0,1), where Fu. =[fo, fi,.... fu-1] and fis are defined by (5).
Suppose, in addition, that there exist a real number M such that

|f'(x)| <M, xe (0,]).

Then for all p>1

|f o= fu ], =007 M). (28)

Moreover, if F m =] f_o,]_fl,..., f;-l]’ be an approximation for the BPF coefficients
vector F,, and ];m (x) =P (x) Fu , then for all p>1

FO—£,(x)

F,—-F, (29)

<M
m

oo

Proof. Let p >1. From the integral mean value theorem follows

|f o= f,@ = j; |f - £, (x)lpdx

m—1

Z:‘[(Hl)h
= ih

= hilf(fi)—ﬁl”, & € (ih,(i +1)h).

Fo-f| (30)

From Eq. (§) and integral mean value theorem, we have

1 pG+n . .
fi :;L, fdx=f(&),  &ie (ih,+Dh). (31
Substituting (31) into (30) gives

[f0- £, =3[ £E) - £
i=0 (32)

=h§|f'<%>|p|§i =" <ny”,
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where we used mean value theorem for function f(x) and % is a number between

& and . Taking the p th root from the both sides of (32) gives (28). To prove (29),
we write

FX) = £, (x) (33)

£ ()= £, (%)

<|f-£,| +

p
Also, we have

£ (0= £,,(2) fu ()= £, (0] dx

r 1
- .[0
p
le J-(i+1)h
s ih
m—1
=hy,
i=0

Now, the result can be concluded from the above inequality and (33).

P
dx

fi-1f

p

i1

p
<|F, -F,

oo

A similar result can be obtained for functions of two variables. First, we formulate
the following theorem.

Theorem 4.2. Let Q c R* be an open convex set, f:Q — R be a differentiable

function and there exists a real number M such that
"f‘(x)”SM, xe Q.

Then,

fO=f(Y|<M|x~y

Proof. See [26].

Theorem 4.3. Let f.(x) =¥’ (x)F. be the BPF expansion of the real differentiable
function f(x) on [0,1)X[0,1), where Fn=[foo, for...fom1s...ofurt0, frilooosfrimi] and fi s are
defined by (17). If f (x) is bounded on (0,1)x(0,1), then for all p >1

|f @)= fu )], =007/ M). (35)

X,y € Q. (34)

2°

Moreover, if Fn =[foo,..., fom-1, fm-10,..., fm-1.m-1]" be an approximation for the

BPF coefficients vector F,. and ];m (x) =¥ (x) I«:m , then forall p>1

Vam
+

m

F —-F

m m

< , (36)

oo

Hﬂﬂ—m@)

p

where M is a real number such that
|| f (x)|| <M, xe (0,1)x(0,).
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Proof. The proof proceeds in complete analogy to the one of Theorem 4.1 and using
Theorem 4.2.
We note that the results of Theorem 4.3 can be easily extended for functions with

n > 2 variables.

5. Numerical method to solve two-dimensional integral
Equations

The results obtained in previous sections are used to introduce a direct efficient and
simple method to solve two-dimensional Volterra and Fredholm integral equations of

the first and second kind.

5.1. Volterra integral equations of the first kind
Consider the following two-dimensional VIE of the first kind
£ = [Tk(x, tu(tydt, (37)
where u(x) is a real unknown function and f(x) and k(x,t) are given L’ functions
definedon D and S = {(x,t) 0t <xi<li= 1,2}, respectively.
Approximating functions f(x), u(x), and k(x,t) with respect to BPFs, as described
by Egs. (14) and (18), gives
fx) =¥ XF,
u(x) =¥'xU, (38)
k(x,t) =" (x)K¥(t)
where
U =[100,U01,..., U0 m—1 , Unm—1.0  Um—1.1 5oy Um—tm—1 ], (39)
is the vector of BPF coefficients of unknown function u(x). The vector F and
matrix K are BPF coefficients of f(x) and k(x,t), respectively and are defined by
(16) and (19). Also, W(x) is the vector defined by (15). Our aim is to find an

approximation of the solution u(x) by approximating the unknown vector U .

By substituting (38) into (37) and using relations (22) and (23), we obtain
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W (x)F = \Pf(x)Kj"\P(t)\P' (tUdt

— ¥ (x)KU [ @bt
e (40)
=¥'(x)KU P/"¥(x)

A (&)
=¥'(x)U ,

where P ® is the operational matrix of integration defined by (26), U= diag(U), €
A (&)
is a known value in (0,1) and U is an m’-vector whose elements are the diagonal

entries of matrix K U P
Now, replacing = with = in (40) gives
l} v =F. (41)
If we represent U in the block form
l} = diag(l}o,l}l,...,l}m_l),
where

Ui =diag(uio,tir,...,im-1),

then
£ KO0 l}o p©
A (£) a1,0) 7. (&) an 77 pe

A A A

K(m—l,O) UO P(€)+...+ K(m—l,m—Z) Um_2 P(€)+gK(m—l,m—1) Um_] P(E)

A

where K“”U; P is the column vector of the diagonal entries of matrix
KD (}i p©

It can be shown that

A

KD (}_; PO =gy, (43)
where
kiojo 0 0
i —| i &ij1 - o (44)
kim-1,jo kim-1.j1 "o &kim-1,jm-1
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and
UY =[ujo,uji,ettjm]. (45)
Therefore, equation (41) is a linear system of equations of the form
HYU =F, (46)
where

eH " 0 e 0

H(l,()) gH(l,l) . 0

H'Y =h’ . . : . ; (47)

H (m—1,0) H (m-1,1) . SH (m—1,m-1)

and H , i=0,1,.,m—1, j=0.,1,...,1, are defined by (44).
Equation (46) is a lower triangular linear system of equations of order m” that can be

easily solved by forward substitution method. But, by defining
FY =[fo, fitsr fima],  i=01,...,m—1, (48)

we can reduce (46) to m lower triangular linear systems of equations of the form

eh*HOOU© - p©
; (49)

enHYU® = O _h2i§“HW>UU>, i=12,...m-1,

j=0
which are of order m .

The lower triangular linear systems in (49) can be solved by forward substitution
method directly and solving the ith system is subject to solving the (i —1)th system. So,
we can solve the smaller systems in (49) instead of solving the large system (46).

At the end, we note that the coefficient matrix H“, which is of order m?* xm?, has

2 2
m-(m+1 . D . .
only % nonzero entries which is very satisfactory from the computational

point of view.

5.2. Volterra integral equations of the second kind

Consider the following two-dimensional VIE of the second kind
u(x) = £+ [ k(x, tu(t)et, (50)
where u(x) is a real unknown function and f(x) and k(x,t) are given L’ functions

defined on D and § ={(x,t):0 <1 < xi,i =12}, respectively.
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Using a similar argument to that employed for the first kind integral equation (37),
the integral equation (50) can be reduced to a lower triangular linear system of
equations of order m* in the form

(I-H“)YW =F, (51)

where I is the identity matrix of order m* and F and H® are defined by (16) and
(47), respectively.

The lower triangular system (51) can directly be solved by forward substitution
method or one can reduce it to m lower triangular linear systems of equations of the
form

(I“”) _gthw,m)U(m —FO,
(1™ e = FO 402 S HOU D, i=12,m ],

Jj=0

(52)

where 1" is the identity matrix of order m and H"” and U are defined by (44)
and (45), respectively. Similar to the linear systems in (49), the lower triangular linear
systems in (52) also can be solved by forward substitution method directly and solving

the ith system, is subject to solving the (i —1)th system.

5.3. Fredholm integral equations
In the rest of this section, we consider the following two-dimensional FIEs of the

first and second kind

Foo=[ [ kxtucat, (53)
and
ux) = )+ [ [ k(xtutyat, (54)

where u(x) is a real unknown function and f(x) and k(x,t) are given L’ functions
defined on D and Dx D , respectively.

From the orthogonality of BPFs follows that

[[[wmw ®at=n1, (55)

where I is the identity matrix of order m”.

By approximating u(x), f(x) and k(x,t) in terms of BPFs, as we described in (38),
the integral equations (53) and (54) can be respectively reduced to

F =h’KU, (56)

and
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U=F+h’KU, (57)
where F, K and U are defined by (16), (19) and (39), respectively.
Replacing = with = in (56) and (57), respectively gives

h*KU =F, (58)
and
(I-h*K)U =F. (59)

Equations (58) and (59) are linear systems of equations of order m* which have full
coefficients matrix and can be solved by numerical methods.

In practice, (59) is usually solved by direct Gauss elimination, with associated cost of

about gmG multiplications and additions. This algorithm is safe, in the sense that it can

not lead to unbounded errors as m is increased, provided that the condition number
Q(m) of the coefficient matrix

o(m) =1 - thH.H(I ~n2k), (60)

does not become too large.

For a fixed value m, if h* is close to a characteristic value of kernel k, since the

coefficient matrix K is an approximation of the kernel k, the condition number Q(m)

may indeed be large. But, if k is a bounded kernel such that for a real number M

IKx,t)IKM, (x,t)e DXD, (61)
then

kijg <M, i,l,j,q=0,1,.,m—1, (62)
and in any natural matrix norm || , We obtain

lim Q(m) =1. (63)

Thus condition number Q(m) is likely to be approximately independent of m and
the linear equation (59) is unlikely to be ill-conditioned expect for those values of m
that i’ is close to a characteristic value of kernel k. Therefore, Gauss elimination
should cause no problem of accuracy.

For the linear system (58), when m increases the coefficient matrix 4°K tends to
the singular matrix 0 and therefore H(th )"IH is a large number. So, in this case we are
faced with an ill-conditioned system of equations and we may have big oscillations in

the obtained solutions.
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6. Numerical examples
The method presented in this article is applied to some examples. The absolute
values of the error at the selected grid points which are proposed as (x,¢) = (//10,1/10),
[=0,1,...,9, is reported.

The L» error and L. rate of convergence are defined to be, respectively

1 el . ) 1/2
Il em I|2=U0J0|u(x)—‘l’ x)U | dx) , (64)
and
P =log2(llen 2 /11 ean II2), (65)

where u(x) is the exact solution of the integral equation and U is the solution of the
obtained linear system. For the considered examples, the values of Il e, Il and p. are
also inserted in the tables.

All the computations were carried out with Mathematica 7 on a personal computer.

Example 6.1. Consider the following first kind two-dimensional VIE

fx,t) = J; J: (xy +te*H)u(y, 2)dydz, 0< x,t <1,

with

f(x,t)=x(t+1te —te’)+lx4(1—e_’)+lx2t2 +lx3t2,

3 2 4

and the exact solution u(x,7) = xe™" +1. The numerical results for this example are
shown in Tables 1 and 2. The results in Table 2 show that the method is not applicable
to this example, when ¢ is close to 0. For a detailed description of this issue, see
Section 7.

Example 6.2. [27] For the following two-dimensional VIE of the second kind

u(x,t) = f(x,10)+ jo j:(xy2 +eos(u(y,2)dydz,  0<xr<l,

where

f(x,t) = xsin(¢) — ixs (I—cos(t)) — ixz sin” (1),

the exact solution is u(x,t) = xsin(¢) . Tables 3 and 4 show the numerical results for

this example.
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Table 1. Numerical results for Example 6.1 when £ =1/2.

(x.1)=(1/10,1/10) m=10 m=20 m =40 m =80 m =160
[=0 92x1072  4.7x1072  23x1072  1.2x107  59x107°
I=1 6.2x107  58x107  3.3x107  1.8x107  9.2x107
[=2 8.7x107  47x107%  24x107%  12x107%  6.0x107
[=3 7.0x107%  39x1072  2x107 99x107°  4.9x107°
l=4 6.7x1072  3.4x107  1.7x1072  8.6x10°  4.3x107
[=5 6.5x107  3.1x107%  1.6x107  7.8x10°  3.9x107°
[=6 57x107  29x1072  14x1072  73x107°  3.6x10°
1=17 57x1072  27x107  14x102 69x10°  3.4x107°
[=38 52x107  2.6x107  13x107%  6.6x10°  3.3x107
[=9 5.1x107%  2.6x107>  1.3x107 6.4x10°  3.2x107°
lex], 32x107  1.69x107  8.69x107°  4.83x107°  2.65x107
P - 0.94 0.92 0.90 0.87

Table 2: L. error values corresponding to different values of m and £ for Example 6.1.

e=1/10 m=5 m=10 m =20 m =40
I=1 1.66x10" 9.36x10""* 8.38x10%° 1.31x10™
1=2 1.47x10" 2.16x10" 3.52x10"" 3.07x10™*
[=3 6.55x10" 7.04x10" 5.12x10" 7.28%x10%*
[=4 5.30x10™" 2.49%10" 1.59x10% 1.57x10%
[=5 9.21x107 3.24x107 1.69x107 8.96x107
=6 1.44x10™" 6.94x107? 8.49%x1072 3.04x1072
1=17 1.96x10" 1.29%10™" 9.82x107 8.45%x107*
[=38 2.43%107" 1.56x107" 1.12x10™" 5.44x107
=9 2.86x10™" 1.81x10™ 1.25x107" 6.41x107

[ Downloaded from system.khu.ac.ir on 2024-05-17 ]

Example 6.3. Consider the following two-dimensional FIE

w(x,t) = f(x0)+ jo' jo' (xsin() + ye u(y, 2)dydz,  0< x,1 <1,

Where
flx,t)=xe™" + l(e‘1 +1)x.sin(z) + le _1
’ 2 ' 2 6

t

The exact solution is u(x,t) =xe™ —1. Table 5 illustrates the numerical results for

this example.
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Table 3: Numerical results for Example 6.2 when £=1/2.

(x,1)=(1/10,1/10) m=10 m=20 m=40 m=80 m =160
=0 25%x107°  6.2x10*  1.6x10*  3.9%x10°  9.8x10°
[ = 1.2x1072  5.6x10°  26x10°  13x10°  6.3x107*
=2 22x107  1.0x107  5.1x107°  25x10°  1.2x107°
[=3 3.1x1072  1.5x107% 7.4x107°  3.7x10°  1.8x107°
=4 40%x107  1.9x107%  9.6x10°  4.8x10°  24x107°
[=5 48%x107% 23x107  1.2x107%  58x107°  29x107
I=6 55x107  2.7x107  1.3x107 6.6x107°  3.3x107°
1=17 6.0x1072  3.0x1072  1.5x1072  7.4x10°  3.7x10°°
=3 6.5x107  32x107%  1.6x107 8.0x107 4.0%x107°
=9 6.8x107  3.4x107%  1.7x107  84x10°  4.2x107°
lex|), 207x107  1.04x107  5.18x107°  2.59x107 1.29x107
D - 1.00 1.00 1.00 1.00

7. Some comments on the results

We approximated two-dimensional VIEs of the first and second kind to a family of
linear systems of equations using the family {P°: £ (0,1)} of operational matrices. These
linear systems were depended on £ . Two obvious questions are:

(i) Is there any & that is optimum in some sense?

(it) How is the behavior of solutions when &£ varies in the interval (0,1) ?

These questions are very important, especially when we are faced with the first kind
VIEs. This type of equations are in general ill-posed and obtaining their numerical
solution often leads to solving a linear system of equations of a large condition number.
These equations may have no solution, while if a solution exists the solution is generally
unstable, and small changes to the problem can cause a very large change to the answer
obtained.

In this section, we study these questions and analyze the numerical results reported in
the tables.

To obtain the family {P(g) (€€ (0,1)} of operational matrices, we have used the

following approximations in (9):
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0, t<ih,

t <ih,

t O’
j&ayh={%—ﬂuihSr<G+&Vuz{duihSt<(ﬁ+Dh

h, t>@{+1)h,

h,

t>(+1)h,

S. Bazm, E. Babolian

(66)

where i =0,1,....m—1. A criterion to specify & suitably is to solve the min—max

problems

Ei(¢)=min max |t—ih—&hl,

£e(0,1) relih,(i+1)h]

It can be easily shown that

Ei =—, i:O,l,...,m—l.

i=0l,..m-1.

(67)

(68)

1. . . o .
Therefore, £ = > is optimum in the sense that the approximation errors in (10) and

(25) are minimum.

Tables 2 and 4 also confirm the superiority of the choice £ = % . We explain this by

analyzing the behavior of solutions of linear systems (46) and (51) when m is a fixed

. . 1
integer and £ varies from ) to 0 ortol.

We observe in Tables 2 and 4 that, for a fixed value of m, the L. error Il en ll2

. ) 1 .
increases when & varies from E to O or tol. This 1s because the error values

Ei(¢),i=0,,..,m—1, in (67) become larger when &£ tends to O or tol. But the

increment in |l e |12 is not the same for VIEs of the first and second kind.

Table 4: L> error values corresponding to different values of m and & for Example 6.2.

g:i m=>5 m=10 m =20 m =40
10
[=1 4.60x107 2.36x107 1.20%x107 6.04x107
[=2 4.33%x107* 2.24%x107* 1.13x107* 5.68x107°
[=3 4.20%107* 2.15x107 1.08x107* 5.41x107°
=4 4.16x1072 209107 1.05%10" 5.24x107°
[=5 4.14x107* 2.07x107* 1.04x107* 5.18x107°
[=6 421x107 2.10x107* 1.05x107* 5.24x107°
1=1 4.68x107* 2.19%x107" 1.09%107? 5.43%x107°
[=38 5.18x107 2.33x107 1.15%107 5.74x107°
=9 5.24x107 2.52x107 1.24x107 6.14x107°
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1 . . .
Indeed, when € changes from 5 to zero the matrix H ' tends to the singular matrix

0 and thus H(H @ )71H may be very large. So, the linear system (46) is an ill-conditioned

system and we may have very large changes in the solutions (see Table 2 ). But, since
VIEs of the second kind are well-posed problems, the solution of (51) is stable when &

. 1 .
varies from 5 to zero although the L error Il ex Il increases.
1 . .
When £ changes from 5 to 1, again the L. error |l ex ll2 increases for both VIEs of

the first and second kind but for the first kind problem we again may have oscillations

in the solutions because this problem is in general ill-possed (see Tables 2,4 ).

Therefore, as we concluded mathematically, the numerical results of Tables 1—4

also show that % 1s the best value for ¢ .

Now, we analyze the behavior of solutions of linear systems (46) and (51) when ¢ is

a fixed value and m increases. For this purpose, we define
0(e,m) = ||1 —H® |(1 —H® )-1||, m>1,ee (0),

where H'® is the matrix defined by (47). By the same argument used at the end of
Section 5, we can show that

il_I)l’clc Qe,my=1, €€ (0,)).

Therefore, for a fixed value €€ (0,1), the condition number Q(&,m) is independent
of m and the linear system (51) is unlikely to be ill-conditioned (expect for those values
of m that h° is close to an eigenvalue of matrices H“"”,i=0,1,...m—1. But for the

linear system (46), H(H © )_IH becomes a large number when m increases and we have

an ill-conditioned system. So, we may have big oscillations in the solutions (see Table

2).
Table 5: Numerical results for Example 6.3.

I 1 m=10 m=20 m =40 m =80 m =160
(x’t) = T
10710
=0 27x107"  1.2x107! 6.2x1072 3.1x1072 1.6x1072
l= 1.8%x1072 3.5x107 2.8%x107* 4.2%x107° 7.8%x107
[=2 1.0x107" 3.8x107 4.6%x107° 1.3x107> 2.3x107
=3 4.6x107? 5.3x107 1.0x107* 9.0x107° 1.4%x107°
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[=4 2.0x10™*  7.2x107° 1.9x107 3.6x107° 3.6x107°
[=5 1.6x107" 5.3x107* 2.2x1072 1.0x107* 4.9%107
[=6 1.4x107" 2.7x107 3.8x107° 1.0x10™* 2.4x107
1=17 1.2x107" 9.0x107 3.8x107° 4.1x107° 8.2x107
[=8 1.1x10™" 3.3x107° 7.4%x107° 2.5%x10™ 1.0x107*
=9 1.0x107" 2.7x1072 8.3x107° 2.0x107° 2.2x107°
en|), 1.39x107"  5.78x1072  2.78x107% 1.37x107  6.85x107°
On - 1.26 1.06 1.00 1.00
Q(m) 7.51654 7.03992 6.93547 6.91017 6.90390

At the end, suppose that ¢ is a fixed value in (0,1). For this value of &, the
approximate relations (10) and (25) are exact at the points ¢ = (i +&)h,i =0,1,...,m—1,

and the approximate solutions obtained by this method are more accurate at the points

1
{(G+&)h,(i+e)h),i=0]1,..,m—1} of D, specially when & = >

8. conclusions

A method based on block-pulse functions and their operational matrix of integration
for the solution of linear two-dimensional integral equation is proposed. This approach
transforms two-dimensional VIEs of the first and second kind into a family of linear
systems of equations. The coefficients matrices of the obtained linear systems, H® and
I—-H'", are block lower triangular matrices whose blocks are also lower triangular
matrices. This is very satisfactory from the computational point of view, because we

m*(m+1)*

need to compute only — of integrals in (21) to compute these matrices.

Moreover, we do not use any projection methods such as Galerkin, collocation, etc.
to set up the linear systems (46) and (51). So, in comparison with other methods, such
as the methods applied in [28, 29], the cost of setting up linear systems is very low. On
the other hand, the linear systems (46) and (51) can be solved directly by forward
substitution method, which is very advantageous computationally, so that we can
increase m to get more accurate approximate solutions without being anxious about the

number of operations.

179


https://system.khu.ac.ir/jsci/article-1-1428-fa.html

[ Downloaded from system.khu.ac.ir on 2024-05-17 ]

Direct method to solve linear two-dimensional integral... S. Bazm, E. Babolian

This approach also reduces the two-dimensional FIEs of the first and second kind
into linear systems of equations. But for these equations the coefficients matrix of the
obtained linear system is a full matrix and for large m solving these systems directly by
Gauss elimination method can lead to surprisingly large computing times. But we can
seek some ways of reducing this cost, for example constructing an iterative scheme for
solving these systems.

The applicability and accuracy of the method is checked on some examples. The
validity of arguments of Section 7 can be checked by the numerical results obtained for
these examples. For instance, the numerical results reported in the tables show the first
order of convergence which is consistent with the claim of Theorem 4.3. Also, all the

1 L : . .
presented tables suggest us to choose 8:5 which is again consistent with the

arguments of Section 7.

For Example 6.3, the condition numbers Q(m) which are reported in Table 5 show
that the problem is well-conditioned. This confirms the arguments at the end of Section
5. In the case of two-dimensional FIEs of the first kind, because of unexpected
oscillations and ill-conditioning of the problem, we do not recommend this method.

Finally, it is clear that the analysis of this paper extends to N —dimensional Volterra
and Fredholm integral equations. We have dealt with the case N =2 mainly for the

sake of clarity.
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