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Abstract

In this paper, a collocation method based on the Bessel polynomials is used for the
solution of nonlinear Fredholm-Volterra-Hammerstein integro-differential equations
(FVHIDES) under mixed conditions. This method of estimating the solution, transforms the
nonlinear (FVHIDES) to matrix equations with the help of Bessel polynomials of the first
kind and collocation points. The matrix equations correspond to a system of nonlinear
algebraic equations with the unknown Bessel coefficients. Present results and comparisons
demonstrate that our estimate has good degree of accuracy and this method is more valid

and useful than other methods.

Introduction

Many problems from physics and engineering and other disciplines lead to linear and
nonlinear integral equations. Now, for solution of these equations many analytical and
numerical methods have been introduced, but numerical methods are easier than
analytical methods and most of the time numerical methods have been used to solve
these equations. Ordokhani [1] used Walsh functions operational matrix with Newton-
Cotes nodes for solving Fredholm-Hemmerstein integro-differential equations. Authors
[2] have solved nonlinear Volterra-Fredholm integro-differential equations by hybrid
Legendre polynomials and block-pulse functions. Babolian et al. in [3], obtained

solutions of nonlinear VFIDES by using direct computational method and triangular
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functions. Dehghan and Salehi in [4] have solved the non-linear integro-differential
equations based on the meshless method. Arikoglu et al. [5] by using differential
transform method obtained numerical solution of integro-differential equations. Yuzbasi
et al. [6], Yuzbasi and Sezer [7], Yuzbasi et al. [8] have worked on the Bessel matrix
and collocation methods for the numerical solutions of the neutral delay differential
equations, the pantograph equations and the Lane-Emden differential equations. Also,
readers who are interested in learning more about this topic could refer to [9-15].
Recently, Yazbasi in [16] used Bessel polynomials and Bessel collocation method
[8] for solving high-order linear Fredholm-Volterra integro-differential equations.
In this article, using Bessel polynomials and Bessel collocation method we estimate

solution of nonlinear (FVIDES) to form:
Sh=o bk ()yP () = g(x) + 244 f,f ey (x, )1 (6, y(6)) dt + 43 ), ke (x, ) (6, y(1)) dt, (1)

0<a<sxt<bh,
under the mixed conditions
wolaiky® (@) + by® ] =%, j=01-,n-1, 2

where y(x) is an unknown function, the known functions are p; (x), k=0,1, ... ,n, g(x),
ki(x,t), ko (x, ), (t, y(t)) and ¥, (t,y(t)). Also, ajy,bjx,A1,4,and A;are real or

complex constants.

Introductory properties of Bessel and Taylor polynomials
1. Bessel polynomials of first kind

The m-th degree truncated Bessel polynomials of first kind are defined by [16]

=0 ok
Jm(¥) = 2,24 m(§)2k+m, 0<x<w, mEN, ?3)

where N is chosen a positive integer so that N > nandm = 0,1,---, N.
we can transform the Bessel polynomials of first kind to N-th degree Taylor basis

functions. In matrix form as
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J(x) = DX(x), (4)
where
J() = o), J1 (), -, In (O], X(x) = [1,x,x2,,xN] . (5)
If N is odd
- N-1
1 -1 -1z 0
10120 11122 N—1_ N—1
0.0.2 1.1.2 ( 2 )|( 2 )!2]\]_1
N-1
1 0 -1z
11121 N—-1, N-1
o2 G5 G5t
( )M
D = 1 —-1) 2
0 0 . 0
12122 N—3_, N+1_
02 E eyt
) ( )u
—1) 2
0 0 0 0! (N —1)!2N-1 0
1
0! N!2N v+ xv+1)
If N is even
N
1 -1 0 (-1)z
0!0!20 111122 Ny, (N
(2)(z)2
'z
1 —
oz ° N=2y, (N, vr 0
=)@
N-2
o e 0 (1) =
0!2!22 N—-2\,(N+2
G
0 0 0 1 0
0! (N —1)!2N-1
1
0 0 0 0
0! N!2N v+ Dxv+1)
2. Taylor polynomials operational matrix of integration
We considere the vector of Taylor polynomials X(x) in (5) with its integration
obtained as [17]
Jy X(©dt = LX(x), (6)
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so that dimension of L is (N + 1) x (N + 1) and

01 0 0
[ool 0]
2
L=]: : : =~ 1| (7
00 0 L
N
0 0 0 0

where L is operational matrix of integral for Taylor polynomials. We also present dual
operational matrix of X(x) with taking the integration of the cross product of two vector

function of Taylor polynomials as [17]

H=["XOX"(®)dt, H=[hjl, ij=01-N, (8)
Where
piti+1_gi+j+1 o
hij = e i,j=01,--,N. (9)

Fundamental relations
1. Matrix relation for the Fredholm integral part
In this section we can approximate the kernel function k,(x,t) by the truncated

Maclaurin series and truncated Bessel series [16], respectively

)
N N
ki(x,t) = Z z ek x™en,
3 i (10)
kG = ) > b I G (O,
m=0n=0
\
where
1 a™"k,(0,0
tkrlnn: 1( )l m,n:O,l,"' ,N.

m!n!  Jdxmot"

We can write matrix forms of Eq. (10) as

ky(x,t) = XTQOKIX (),  ki=[,kk,],  mn=01 N, (11)
ki(x,t) = JT (k] (0), ko = [pkmn], mmn=01N, (12)
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By substituting Eq. (4) in Eq. (12) and putting equal to Eq. (11) we obtain:
ki = DT kiD, k= (D) k(D). (13)
Now, for solving these equations, we need to define Z, (t) and Z,(t) as
Z1(t) = Y1 (t,y (1), (14)
Zy(t) = (L, y(1)),
and approximate them by Bessel polynomials of first kind and using Eq. (4)

Z;(t) = JT(6)A; = X" (t)DT A4, (15)
Z,(t) = JT()A, = XT(t)D" Ay,

where
Ay = [as,a11,-, a1n]", Ay = [az0,ap1,+, azn]"
By substituting the matrix forms of Egs. (12) and (15) in Fredholm integral part of Eq.
(1) we get
b b
f ke (x, )1 (8 (1) = f JT (ks J@OJT ()Adt = JT (0)kp Q144, (16)
a a

so that
b

b
Q.= f J@®) JT(t)dt = f DX(t)XT(t)DT dt = DH,DT,

where H, , the integration of dual operational matrix of Taylor polynomials, is defined

in (8). Finally, by substituting Eq. (4) in Eg. (16) we have matrix form of Fredholm part

b
f ky (6, O (6, y(©) = X (ODTK} QuA;. a7

2. Matrix relation for the Volterra integral part
We can write kernel function k,(x,t)such as k;(x,t)and approximate it by

truncated Maclaurin series and truncated Bessel series [16]

ko (%, ) = Lo Zn=o0 ckinn X", (18)
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ka (1) = i i ok Jm (O (),

m=0n=0

where
1 0™*"k,(0,0)

m!n!  9xmotn '

thim = m,n=0,1,-,N.
Matrix form as

ky(x,t) = XT(0)kEX(t), ki = k%], m,n=0,1,---,N,

ko (x,8) = JT () kp) (8), ki = [ ki),  mn=01,N.
By substituting Eq. (4) in Eg. (20) and putting equal to Eg. (19) we obtain

k? = DT kD, ki = (DT 'kZ (D).

(19)

(20)

(21)

By substituting the matrix form of Egs. (15) and (20) in Volterra integral part of Eq. (1)

we have

f ko (x, )2 (t, y(8)) = f JT Ok J(®)JT ()Azdt = JT(Okp Q2()A,,  (22)

so that

em= | IO T @dt ~ | "DX(OXT()DT dt = DH,(x)DT,

a

where H,(x), the integration of dual operational matrix of Taylor polynomials, is

defined as
X
Hy(x) = f X®XT(0dt = [hy; (0)],  i,j=0,1,,N,
a

xl+]+1 _ al+]+1

i+j+1

hij(x) = , i,j=01,-,N.

By substituting Eq. (4) in Eq. (22) we have matrix form of Volterra part

jxkz (x, P26,y (1)) = XT(x)MH,(x)D" Ay, M = D"k;D.

3. Method of solution

To solve Eqg. (1) with conditions in Eg. (2), we assume
N

YW = Y i) = AT =T (@A,
= 352

(23)

(24)
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where
A ES [ao, al, Yy aN]T.

By using Egs. (4), (6) and (24) we have

X
Y@ (x) = AT f J(©)dt + An-r,
0
pe
~ AT f DX(t)dt + A,_y = AT DLX(x) + A,_4
0

and
y(n—Z) (x) ~ ATDLZX(_X) + An_lx + /171_2,

similarly for y(x) we obtain
y(x) = ATDLnX(x)+Zm poa X1 (25)

Now, by substituting Egs. (17), (23) and (25) in Eq. (1) we get
n—-k—-1

1
Zpk COCATDLM X (x) + Z e T (26)

=g(x) + L, XT(X)DTk} Q1A + 2, XT (x)MH,(x)DTA, .
We can expand x%,i = 0,1,---,n — 1, with Taylor bases to get

xt = e;X(x),
e = (0’0‘...’0’ 1, 0,...’0)T’ i=01-,n—-1, n<N. (27)

i-1 N-i

By using Eq. (27) and substituting it in Egs. (25) and (26) we have, respectively

y(x) ~ ATDL”X(x)+Zm/1n - jeno1o; X (), (28)
and
n—-k-1 1
Zpk (O(ATDIM+X () + Z T A sen1y X)) (29)

= g(x) + 1, XT(x)DTkj, Q1A + 2,XT (x)MH,(x)DT As,.
By using Eq. (28) and substituting this equation in Eq. (15) we obtain
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P1(x, ATDL™X (x) + Z m n-1-jen-1-j X(x)) = X" (x)DT Ay, (30)
1/)2(x ATDLnX(X) + Z m n— l—jen—l—j X(x)) = XT(X)DTAZ. (31)
Also, from Egs. (29), (30) and (31) and collocation points [16] defined by
b—a
X, =a+ N i i=01,--,N
We have
([ TRooPi (OCATDLM*X(x) + B} ooy Ane1-jn-1- X (6))
= g(x;) + X" (x)DTkjy Q1 A1 + 2, X" (x;))MH (x;)D" Ay,
! (32)
P10, ATDLX () + 120 7oy =5 Ane1-jen-1-; X(1)) = X7 (D" Ay,
W (x, ATDLX () + £J20 ooy Ane1-jen-1-; X (1)) = X7 (x)D7 A,
where i = 0,1, -+, N. Or briefly the fundamental matrix system is
1
( Zkeo P (ATDL"*XT + X320 o Anajenoa—j XT)
= G + 11XDTkl% QlAl + AzXMHD Az,
3 ) (33)
Y1 (x, ATDL"XT + ?;(}m/ln—l—jen—l—j XT)=XDTA,,
1
(2 (%, ATDL"XT + 320 =55 An1-j€n-1-; X) = XDT Ay,
wherei =0,1,---,N and
P (Xo) 0 9(xo) X7 (xo)
0 Pr(x1) - (xl) X" (x,)
P, = - ' . X = S
0 0 Pr(xn) g(xn) X7 (xn)
M 0 - 0] [XT (x0) 0 0
_ 0 M 0 _ 0 XT(x 0
. | - | - (1)

,_
o
o

—
—_—
o
o
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[DT] [H2(x0) 0 0 1

_ DT _ I 0 Hy(x1) - 0 I
D = and H=| . . .
: | : - : |

lprl | o 0 e Hy(e))

We can obtain A,, A, and A from system of Eq. (33) and with substituting A in Eq.

(28) ultimately, we get approximate solution of Eq. (1).

IHlustrative examples
In this section, we report the results of approximation solution to some examples that
were given various papers. In addition, we have expressed absolute error functions
which are defined as |y(x) — yy(x)|, where y(x) is the exact solution of Eq. (1) and
yn (x) is the approximate of y(x). All the examples were performed on the computer by
using a program written in MATLAB.

Example 1. Let us first consider the nonlinear FHIDE [18],

1

y'(x) + xy'(x) — xy(x) = e¥ — sin(x) + f sin(x)e 2t y2(t)dt, 0 < x,t <1, (34)
0

with conditions y(0) = 1, y'(0) =1 and the exact solution to Eq. (34) is y(x) =
exp(x). Now, we obtain approximate solutions of this example for N=2, 4, 6, 8 by Bessel
polynomials. where po(x) = —x, p;(x) = x, pp(x) =1, ky(x,t) =sin(x)e™?t, 1, =1

g(x) = e* —sin(x) . and Also, the set of collocation points for N = 2 is

1
{XO = O,X1 ==,Xy = 1}

2
so that
_1 0 _1_
1 0 0 4 0 1 0
X=|1 11 D =10 ! 0 L=|0 0 1
B 2 4| - 2 ’ - 2|
1 1 1 1 0 0 0
0 0 3
0 0 0 0 0 0 1 0 0
-1 1
P0=0 7 O, P1=0 E 0, P2=O 1 O,
0 0 1 0 0 1 0 0 1
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_1 1 1_
0 0 0 0 0 0 2 3
1 1 1
KL.o=[1 =2 2], ki=12 -8 36|, H=|= = -}
mn b 172 3 2
0 0 0 0 0 0 1 1 1
3 4 5
8458 x 10”1 2187 x10"! 3.541 x 102 1
Q=12187x10"1 8333x10°2 1.562x 1072|, G =11.1693|.
3541 x 1072  1.562x 10"2 3.125x 1073 1.8768

Hence, by using system (32) and matrices obtained above, we have

1-k
ZPR(ATDLZ kXT+Z(1 ey X7) = G + WXDTE QuAy,

lpl(xl,ATDLZXT+Z Ty ey X7 = XDy
\

we obtain Bessel coefficient matrix as
A=[1 41954 4.0252].
Ultimately, by substituting A in Eq. (28) for N = 2 and n = 2 we have approximate
solution of Eq. (34)
y.(x) = 1 + x + 0.5x2.
Similarly for N = 4, 6, 8 we have

ya(x) =1 +x + 0.5x% + 0.199308331x3 + 0.0479812523x*,

y6(x) =1+ x + 0.5x2 + 0.169341666x3 + 0.0416791666x*
+ (0.7754895833 10™2)x° + (0.15533159722 X 1072)x5

and

ve(x) =1 + x + 0.5x% + 0.166791666x> + 0.041659375x* + (0.834427083 X
10-2x5+(0.128079861x10-2)x6+(0.42292906746x10-3)x7—(0.2513107026x1
0-3)x8.

The absolute error values are given for different values of N in Table 1.
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Tablel. Absolute errors and CPU times of Example 1

Present method Method
of [18]
X N=4 N=6 N=8 n=5, m=5
0.0 0 0 0 0
02 | 268x107* 212x1075 9.87x 1077 4.00x 1077
04 | 215x1073  1.65x 10™* 6.77x 107° 8.10x 107°
0.6 | 7.15x1073 536x 10™* 2.34x 1075 7.73x 1075
0.8 | 161x1072 1.18x 1073 3.66x 1075 4.24x 107*
1.0 | 290x 1072  2.04x 1073  3.40x 10~° 1.64x 1073
CPU | 3.08x 1072 584x1072 4.78x 1072 -
Example 2. Now consider the nonlinear VHIDE [2],
, 1 2 x
y (x) = —=2sin(x) — gcos(x) - §cos(2x) + fo cos(x — t)y? (t)dt,

0<x<1,

with condition y(0) = 1. The exact solution to this equation is y(x) = cos(x)-sin(x). The

values obtained in Table 2 show that if the accuracy increases, N will increase .

[ Downloaded from system.khu.ac.ir on 2024-04-28 |

Table2. Absolute errors and CPU times of Example 2

Present method Method
of [2]
X
N=4 N=6 N=8 n=8, m=8
0.0 0 0 0 1.00 x 1076
0.1 1.07x 107> 1.75x 1077 4.52x 107° 1.60 x 1075
0.2 3.26x 1075 568x 1077 2.13x 1078 2.56 x 1074
0.3 7.65x 107 1.23x107% 4.68x 1078 8.40 x 1075
0.4 1.98x 10~* 2.63x 1076 6.94x 1078 9.43 x 107*
0.5 5.09x 10~* 6.29x 107¢ 1.89x 108 1.20 x 1075
0.6 1.19x 1073  1.61x 1075 3.93x 1077 2.76 x 107*
0.7 250x 1073  4.10x 1075 2.07x 107¢ 470 x 1075
0.8 482x 1073 9.74x 1075 7.43x10°° 1.10x 1077
0.9 8.60x 1070 2.14x 107* 219x 107° 7.80 x 1070
1.0 1.44x 107 439x 10~ 572x 1077 8.15x 107*
CPU | 237x10™? 3.08x 107 4.07x107° -

Example 3. Consider the nonlinear FVHIDE [4],
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P

: x x
y(x)=1- 5+ Eexp(—x2) +f xt exp(—y? (t))dt, 0<x<1,
0

with condition y(0) = 0. The exact solution to this example is y(x) = x. The maximum
absolute errors and CPU times are shown in Table 3 and the absolute error for various
values N are shown in Table 4.

Table3. Maximum absolute errors and CPU times of Example 3

[ Downloaded from system.khu.ac.ir on 2024-04-28 |

N=5 Present method Method of [4]
CPU 2.36x 1072 0.39
Maximum absolute error 5.81%x 1077 2.02x 1077

Table 4: Absolute errors and CPU times of Example 3

Present method
X N=2 N=3 N=5

0.0 0 0 0

0.1 4.88x 1070 1.07 x 1077 3.91x 1078
0.2 1.95x 107* 7.23% 1077 6.14x 107°
0.3 4.39%x 1077 2.30x 1070 9.05x 10~
0.4 7.80x 1077 5.29 x 1070 2.05x 1077
0.5 1.22x 1073 1.01x 107° 8.74x 1077
0.6 1.75x 1073 1.73x 1077 267 %1070
0.7 2.39x 1073 272x107° 6.85 x 1070
0.8 3.12x 1073 4.03x 1070 1.53x 1070
0.9 3.95x 107° 571x107° 311x107°
1.0 4.88x 1073 7.80x 1070 5.81x 1070
CPU | 1.26x 107? 2.33x 1072 2.36x 1072

Example 4. Consider the nonlinear FVHIDE [2,3,19],

358



https://system.khu.ac.ir/jsci/article-1-1642-en.html

[ Downloaded from system.khu.ac.ir on 2024-04-28 |

An application of Bessel function for solving nonlinear Fredhol...

y'(x) + y(x) = 2x + x% +

with condition y(0) = 0. The exact solution to this example is y(x) = x2. The

computational results of absolute error for N = 4 and N = 6 with the result of other

10

methods are given in Table 5.

1, L1
X732

Y. Ordokhani, H. Dehestani

1 1 r*
f ty3 (t)dt — Ef xy?(t)dt, 0<x<1,
0 0

Table 5. Absolute errors and CPU times of Example 4

Present method Method of [2] Method of [3] | Method of [19]
X N=4 N=6 n=8,m=8 M=16

0.0 0 0 0 0 0

01 | 334x10”° 566x107° 2.18x 1073 3.10x 1070 1.66x 107*
02 | 637x107° 1.01x 1077 1.46x 1073 7.50% 10™° 2.54% 107*
03 | 912x 10 1.33x 1077 1.67x 1073 1.71x 107* 2.62x 107*
04 | 116x107* 1.60x 107/ 7.23x 1073 9.40x 1077 1.91x 107*
05 | 138x707* 213x1077 2.28x 107* 1.60x 1072 4.10%x 1070
06 | 160x707* 3.71x1077 1.14x 1072 5.02x 10™* 2.02x 107*
0.7 | 1.80x107* 8.80x 1077 451x 1073 5.83x 107* 2.83x 107*
0.8 | 1.99x /07* 1.90x 1077 4.87x 1073 3.74x 107* 2.83x 107*
09 | 219x107* 4.25x 1077 1.66x 1072 4.70x 1070 2.02x 107*
10 | 238x107* 883x 1077 3.09x 1072 1.40x 1070 3.70x 1077
CPU | 886x 1077 9.01x 107° - - -

Conclusion

In this paper, we have solved nonlinear FVHIDES by Bessel polynomials of the first
kind and collocation method. One significant advantage of this method is that by
increasing value of N, approximate solution is convergent and the accuracy increases
sufficiently. This method can produce sparse matrix, and this is one of the major reasons
for its high accuracy, and, as noticed earlier, the results of the proposed method are

more accurate than the results of Legendre-hybrid polynomials.
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