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Abstract 

An expansion method based on block-pulse functions is developed to find the numerical 

solution of two-dimensional linear Volterra and Fredholm integral equations of the first and 

second kind. The present work is based on introducing a family of operational matrices of 

integration. Error analysis is worked out that shows efficiency and accuracy of the proposed 

method. Also, some numerical examples are presented.  

 

1. Introduction 

Many problems in engineering and mechanics can be transformed into two-

dimensional integral equations. For example, it is usually required to solve Fredholm 

integral equations (FIE) in the calculation of plasma physics [1]. Graham [2] illustrated 

an application of two-dimensional FIEs in the solution of a problem which arises in 

electrical engineering. McKee et al. [3] reduced a class of nonlinear telegraph equations 

to two-dimensional Volterra integral equations (VIE). Some other applications of two-

dimensional integral equations can be found in [3, 4].  

While the numerical analysis of one-dimensional integral equations is well 

developed (see, for example, [5-8] and references therein), the numerical methods for 

two-dimensional integral equations seem to have been discussed in only a few places 

(see [2-4], [9-17]). 
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However, during the last 20 years, significant progress in this area has been made. 

Brunner and Kauthen introduced in [11] collocation and iterated collocation methods 

for the solution of two-dimensional linear VIE. They presented an analysis of global 

and local convergence properties of these methods, and derived results on attainable 

orders of global convergence and local superconvergence. Brunner extended this study 

to the case of nonlinear VIE [12]. 

Important contributions to this field can be also found in the works of Guogiang Han 

and his co-authors. They obtained asymptotic error expansions for different classical 

methods, when applied to two-dimensional integral equations, and used them as a basis 

to introduce extrapolation algorithms. In [13], they used this approach to analyze the 

solution of linear VFIE by the Nystrom trapezoidal method. In [14] and [15], the 

iterated collocation method was applied to the solution of nonlinear VIE. Nonlinear FIE 

have been considered in [16] and [17], where these equations were solved, respectively, 

by the Nystrom and the iterated Galerkin methods. 

Computational methods based on the application of different sets of basis functions 

have become a very common tool for the solution of different kinds of functional 

equations, including integral ones. In particular, we are interested here in the use of the 

block-pulse functions (BPFs). 

Of all piecewise constant block functions, the BPF turned out to be the most 

fundamental and its qualitative as well as quantitative appraisal is presented by Deb et 

al. [18]. The most striking feature of this function set is its piecewise constant nature. 

They have been applied as a useful tool in the analysis [19, 20], synthesis [21], 

identification and other problems of control and systems science [22]. 

An interesting property of the BPFs, which makes them attractive from the 

computational point of view, is that the computation of integrals of such functions is 

very easy. Therefore, when solving numerically differential or integral equations, the 

use of a basis of BPFs is very advantageous, when compared with other basis of 

orthogonal functions. 

 [
 D

ow
nl

oa
de

d 
fr

om
 s

ys
te

m
.k

hu
.a

c.
ir

 o
n 

20
24

-0
4-

29
 ]

 

                             2 / 22

https://system.khu.ac.ir/jsci/article-1-1428-en.html


Direct method to solve linear two-dimensional integral…                                           S. Bazm, E. Babolian 

 

163 

In this paper, we consider the m-set { } 1

0
)(

−

=

m

ii tφ of BPFs on interval [0,1)  and 

introduce a family of operational matrices of integration corresponding to this set so that 

the operational matrix of integration introduced in [23] is a member of this family. 

Then, using this family of operational matrices, we derive a family of operational 

matrices of integration corresponding to the product-set { } 1

0,21 )().(
−

=

m

jiji tt φφ
 

of BPFs, 

defined on )1,0[)1,0[ × . 

It is shown that the two-dimensional VIEs of the first and second kind can be 

reduced to lower triangular linear systems of equations that can be solved directly by 

forward substitution method. The two-dimensional FIEs of the first and second kind is 

also reduced to linear systems of equations, but in these cases the coefficients matrices 

of the obtained linear systems are full. 

The paper is organized as follows. After an introduction to the present work, a 

review of block-pulse functions is provided in Section 2. In Section 3, we define a 

product-set of BPFs and extend the results of Section 2 to this set. Then, in Section 4, 

we analyze the error representation when a differentiable function is expanded in terms 

of BPFs and give some bounds on the errors. The numerical method which reduces the 

two-dimensional Volterra and Fredholm integral equations to linear systems of 

equations is proposed in Section 5. Some numerical examples are presented in Section 6 

to demonstrate the efficiency and accuracy of the method. Finally, in Section 7 we 

discuss on conditioning of the linear systems obtained in Section 6 and analyze the 

numerical results reported in the tables. 

 

2. Review of block-pulse functions 

Block-pulse functions have been widely used for solving different problems [5, 24]. 

A complete description of these functions is given in [20, 25]. In this section, we briefly 

review this class of functions. 

2.1. Definition and properties 

An m-set of BPFs over the interval [0, T) is defined as 
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�
�
� +<≤=

,,0
,)1(,1

)(
otherwise

hitih
tiφ                                                                               )1(  

where 1,...,1,0 −= mi , T/m h =  and m  is a positive integer number. The function 

)(tiφ  is called the ith BPF. 

Without loss of generality consider 1=T , so mh /1= . By definition (1), it is clear 

that 

� −==
1

0
.1,...,1,0,)( mihdttiφ                                                                        (2) 

Among various properties of BPFs, the most important ones are disjointness, 

orthogonality and completeness. From the definition of BPFs, we have 

�
�
�

=
≠=

,,0
,),(

)().(
ji
jit

tt i
ji

φφφ                                                                                  )3(  

Where 1,...,1,0, −= mji . This property is known as disjointness of BPFs. 

Using (2) and disjointness property, we obtain 

� =
1

0
,)().( ijji hdttt δφφ                                                                                           )4(  

where 1,...,1,0, −= mji  and ijδ  is the Kronecker delta. So, all the BPFs )(tiφ  are 

orthogonal to each other. 

The other property is completeness. For an arbitrary function f  in ))1,0([2
L , when 

m  approaches infinity, Parseval’s identity holds as follows 

� =
1

0

222 ,)()( tfdttf ii φ                                                                                     

where 

�=
1

0
.)()(

1
dtttf

h
f ii φ                                                                                             )5(  

2.2. Function approximation and operational matrix 

A function  f(t)  in ))1,0([2
L �may be expanded in terms of BPFs as 

,)()( Fttf
tΦ≅                                                                                                       )6(  

where 

,],...,,[ 110
t

mfffF −=                                                                                              (7) 

with if s as defined in (5) and 

.)](),...,(),([)( 110
t

m tttt −=Φ φφφ                                                                              (8) 

Now, let ε  be a value on )1,0(  and approximate iht − , for all values 

))1(,[ hiiht +∈ , by hε . The integral ττφ d
t

i�0 )(  can be approximated in terms of BPFs 

as 
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)(]1,...,1,,...,0,0[)(
0

thd
t

i Φ≅� εττφ ,                                                                        (9) 

in which ε  is the i th component. Therefore, 

� Φ≅Φ
t

Pd
0

)( ),()( τττ ε                                                                                          (10) 

where 

           .

000

100

110

111

)(

mm

hP

×

�
�
�
�
�
�

�

�

�
�
�
�
�
�

	




=

ε

ε

ε

ε

ε

�

�����

�

�

�

                                                             (11) 

The upper triangular matrix )(ε
P  performs as an integrator and for a function f  in 

))1,0([2
L , we have 

          ),()( )(

0
tPFdf t

t

Φ≅�
εττ                                                                                (12) 

where F  is the vector of BPF coefficients of function f  defined by (7). We call 

{ })1,0(:)( ∈εε
P  as a family of operational matrices of integration corresponding to the 

set { } 1

0
)(

−

=

m

ii tφ . We note that the operational matrix of integration presented in [23] is a 

member of this family when 2/1=ε . 

 

3. Operational matrices of integration corresponding  

to a product-set of block-pulse functions 

Let { } 1

0
)(

−

=

m

ii tφ  be an m-set of BPFs defined on interval )1,0[ and put )1,0[)1,0[ ×=D . 

We define the product-set { } 1

0,
)(

−

=

m

jiij tφ  of BPFs on D  as  

),().()( 21 tt jiij φφφ =t                                                                                             (13) 

where ),( 21 tt=t . Using a similar argument to that employed for the set { })(tiφ , we 

can show that the product-set { } 1

0,
)(

−

=

m

jiij tφ  is also disjoint, orthogonal and complete. So, 

any function of two variables )(tf  in )(2 DL  can be expanded as 

,)()( Ff
t

tt Ψ≅                                                                                                     (14) 

where 

),()()( 21 tt Φ⊗Φ=Ψ t                                                                                          (15) 

and 

[ ] .,...,,,...,,...,, 1,11,10,11,00100
t

mmmmm ffffffF −−−−−=                                               (16) 

In (15), ⊗  denotes the Kronecker product. The block-pulse coefficients ijf  in (16) 

are given by 
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,1,...,1,0,,)()(
1 1

0

1

02
−== � � mjidf

h
f ijij ttt φ                                                   (17) 

where 2.1 dtdtd =t  and mh /1= . 

Similarly, any function ),( ytk  in )(2
DDL ×  can be expanded in terms of BPFs as 

),()(),( ytyt ΨΨ= Kk t                                                                                        (18) 

where K  is a block matrix of the form 

,][ 1

0,

),( −
== m

ji

jiKK                                                                                                   (19) 

in which 

         ,1,...,1,0,,][ 1

0,

),( −== −
= mjikK m

qliljq
ji

                                                       (20) 

and the block-pulse coefficients iljqk  are given by 

� � � �=
1

0

1

0

1

0

1

04
.)()(),(

1
ytytyt ddk

h
k jqililjq φφ                                                               (21) 

By disjointness property of the set
 
{ } 1

0,
)(

−

=

m

jiij tφ , we obtain 

),()()()),(()()(
~

tttttt Ψ=ΨΨΨ=ΨΨ VVdiag
tt                                   (22) 

where V  is a column vector of order 2
m  and )(

~

VdiagV = . Moreover, it can be 

easily concluded that for any 22
mm ×  matrix B  

),()()(
^

ttt Ψ=ΨΨ tt
BB                                                                                           (23) 

where 
^

B  is a column vector whose elements are the diagonal entries of matrix B .  

Similar to the one-dimensional case in Section 2, we can obtain a family of 

operational matrices of integration in order to approximately integrate functions of two 

variables. For this purpose, let ε  be a value on )1,0( . Also, for any integrable function 

f over domain D , consider the notation 

� � �=
t

0
��

2 1

0 0
2121 .),(:)(

t t

ddfdf ττττ                                                                           (24) 

By computing �
t

yy
0

)( dijφ , for 1,...,1,0, −= mji , using the approximate relation (10), 

we obtain 

),()( )(
0 tyy

t

0
Ψ≅Ψ�

ε
Pd                                                                                          (25) 

where )(

0

ε
P  is the 22

mm ×  block upper triangular matrix 

,)()()(

0

εεε
PPP ⊗=                                                                                               (26) 

in which )(ε
P  is the mm ×  upper triangular operational matrix defined by (11). Thus 

)(

0

ε
P  performs as an integrator and for a function )(tf  of two variables, using (14) and 

(25), we have 

),()( )(
0 tyy

t

0
Ψ≅�

ε
PFdf

t                                                                                      (27) 
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where F  is the vector of BPF coefficients of function f defined by (16). We call 

{ })1,0(:)(

0 ∈εε
P  as a family of operational matrices of integration corresponding to the 

product-set { } 1

0,
)(

−

=

m

jiij tφ  of BPFs defined on D . 

 

4. The estimation of the error 

In this section, we analyze the error representation when a differentiable function is 

expanded in terms of BPFs and give some bounds on the error. 

Theorem 4.1. Let m
t

m Fxxf )()( Φ= , be the BPF expansion of the real differentiable 

function )(xf  on )1,0[ , where t
mm fffF ],...,,[ 110 −=  and if s are defined by (5). 

Suppose, in addition, that there exist a real number M  such that 

).1,0(,)(' ∈≤ xMxf                                                                               

Then for all 1≥p  

)./1()()( MOxfxf
p

m =−                                                                                 (28) 

Moreover, if  t
mm fffF ],...,,[ 110

−

−

−−−

=  be an approximation for the BPF coefficients 

vector mF  and 
−−

Φ= m
t

m Fxxf )()( , then for all 1≥p  

.)()(
∞

−−

−+≤− mmm FF
m

M
xfxf                                                                       (29) 

Proof. Let 1≥p . From the integral mean value theorem follows 

.))1(,(,)(

)(

)()()()(

1

0

1

0

)1(

1

0

�

��

�

−

=

−

=

+

+∈−=

−=

−=−

m

i

i

p

ii

m

i

phi

ih
i

p

m

p

pm

hiihffh

fxf

dxxfxfxfxf

ξξ

                                   (30) 

From Eq. (5) and integral mean value theorem, we have 

.))1(,(),()(
1 )1(

�
+

+∈==
hi

ih
iii hiihfdxxf

h
f ζζ                                              (31) 

Substituting (31) into (30) gives 

,)()(

)()()()(

1

0

'

1

0

pp

ii

pm

i

i

pm

i

ii

p

pm

Mhfh

ffhxfxf

≤−=

−=−

�

�
−

=

−

=

ζξγ

ζξ

                                            (32) 
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where we used mean value theorem for function )(xf  and iγ  is a number between 

iξ  and iζ . Taking the p th root from the both sides of (32) gives (28). To prove (29), 

we write 

.)()()()()()(
p

mmpm

p

m ffffff xxxxxx
−−

−+−≤−                                       (33) 

Also, we have 

.

)()()()(

1

0

1

0

)1(

1

0

p

mm

m

i

p

ii

pm

i

hi

ih
ii

p

mm

p

p

mm

FFffh

dxff

dxxfxfxfxf

∞

−−

=

−

−

=

+ −

−−

−≤−=

−=

−=−

�

��

�

 

Now, the result can be concluded from the above inequality and (33). 

A similar result can be obtained for functions of two variables. First, we formulate 

the following theorem. 

Theorem 4.2. Let 2ℜ⊂Ω ��be an open convex set, ℜ→Ω:f  be a differentiable 

function and there exists a real number M  such that 

.,)(' Ω∈≤ xx Mf  

Then, 

.,,)()(
2

Ω∈−≤− yxyxyx Mff                                                            (34) 

Proof. See [26].  

Theorem 4.3. Let m
t

m Ff )()( xx Ψ=  be the BPF expansion of the real differentiable 

function )(xf  on )1,0[)1,0[ × , where t
mmmmmm ffffffF ]...,,,...,...,,[ 1,11,10,11,00100 −−−−−=  and ijf s are 

defined by (17). If )(' xf  is bounded on )1,0()1,0( × , then for all 1≥p  

)./1()()( MOff
p

m =− xx                                                                                 (35) 

Moreover, if t
mmmmm ffffF ],...,,,...,[ 1,10,11,000

−

−−

−

−

−

−

−−

=  be an approximation for the 

BPF coefficients vector mF  and 
−−

Ψ= m
t

m Ff )()( xx , then for all 1≥p  

,
2

)()(
∞

−−

−+≤− mm

p

m FF
m

M
ff xx                                                               (36) 

where M is a real number such that 

).1,0()1,0(,)(' ×∈≤ xx Mf  
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Proof. The proof proceeds in complete analogy to the one of Theorem 4.1 and using 

Theorem 4.2. 

 We note that the results of Theorem 4.3 can be easily extended for functions with 

2>n  variables. 

 

5. Numerical method to solve two-dimensional integral 

Equations 

The results obtained in previous sections are used to introduce a direct efficient and 

simple method to solve two-dimensional Volterra and Fredholm integral equations of 

the first and second kind. 

5.1. Volterra integral equations of the first kind 

Consider the following two-dimensional VIE of the first kind 

,)(),()(
0

tttxx
x

dukf �=                                                                                         (37) 

where )(xu  is a real unknown function and )(xf  and ),( txk  are given 2
L  functions 

defined on D  and { }2,1,10:),( =<≤≤= ixttxS ii , respectively. 

Approximating functions )(xf , )(xu , and ),( txk  with respect to BPFs, as described 

by Eqs. (14) and (18), gives 

)()(),(

,)()(

,)()(

txtx

xx

xx

ΨΨ=

Ψ=

Ψ=

Kk

Uu

Ff

t

t

t

                                                                                         (38) 

where 

,],...,,,,...,,[ 1,11,10,11,00100
t

mmmmm uuuuuuU −−−−−=                                                       (39) 

is the vector of BPF coefficients of unknown function )(xu . The vector F  and 

matrix K  are BPF coefficients of )(xf  and ),( txk , respectively and are defined by 

(16) and (19). Also, )(xΨ  is the vector defined by (15). Our aim is to find an 

approximation of the solution )(xu  by approximating the unknown vector U . 

By substituting (38) into (37) and using relations (22) and (23), we obtain 
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,)(

)()(

)()(

)()()()(

)(^

)(

0

~

~

ε

ε

U

PUK

dUK

UdKF

t

t

o

t

o

ttt

x

xx

ttx

tttxx

x

x

Ψ=

ΨΨ=

ΨΨ=

ΨΨΨ≅Ψ

�

�

                                                                   (40) 

where )(

0

ε
P  is the operational matrix of integration defined by (26), )(

~

UdiagU = , ε  

is a known value in )1,0(  and 
)(^ ε

U  is an 2
m -vector whose elements are the diagonal 

entries of matrix 
)(

0

~
ε

PUK . 

Now, replacing ≅  with =  in (40) gives 

.
)(^

FU =
ε

                                                                                                             (41) 

If we represent 
~

U  in the block form 

),,...,,( 1

~

1

~

0

~~

−= mUUUdiagU                                                                                   

where 

),,...,,( 1,10

~

−= miiii uuudiagU  

then 

,

...

^

)(
1

~
)1,1(

^

)(
2

~
)2,1(

^

)(
0

~
)0,1(

^

)(
1

~
)1,1(

^

)(
0

~
)0,1(

^

)(
0

~
)0,0(

)(^

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

	




+++

+=

−
−−

−
−−− εεε

εε

ε

ε

ε

ε

ε

PUKPUKPUK

PUKPUK

PUK

hU

m
mm

m
mmm

�

     (42) 

where 

^

)(
~

),( εPUK j
ji  is the column vector of the diagonal entries of matrix 

.)(
~

),( ε
PUK j

ji  

It can be shown that 

,)(),(

^

)(
~

),( jji
j

ji UHPUK =ε                                                                                   (43) 

where 

,
0

00

1,,1,1,1,0,1,

1101

00

),(

��
�
�
�

�

�

��
�
�
�

	




=

−−−− mjmijmijmi

jiji

ji

ji

kkk

kk

k

H

ε

εε

ε

�

����

�

�

                             (44) 
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and 

.],...,,[ 1,10
)( t

mjjj
j

uuuU −=                                                                                    (45) 

Therefore, equation (41) is a linear system of equations of the form 

,)(
FUH =ε                                                                                                          (46) 

where 

,
0

00

)1,1()1,1()0,1(

)1,1()0,1(

)0,0(

2)(

�
�
�
�
�

�

�

�
�
�
�
�

	




=

−−−− mmmm
HHH

HH

H

hH

ε

ε

ε

ε

�

����

�

�

                          (47) 

and ),( ji
H , ijmi ,...,1,0,1,...,1,0 =−= , are defined by (44). 

Equation (46) is a lower triangular linear system of equations of order 2
m  that can be 

easily solved by forward substitution method. But, by defining 

,1,...,1,0,],...,,[ 1,10
)( −== − mifffF

t
miii

i                                                     (48) 

we can reduce (46) to m  lower triangular linear systems of equations of the form 

�
�
�

�

��
�

�

�

−=−=

=

�
−

=

,1,...,2,1,

,

,

1

0

)(),(2)()(),(2

)0()0()0,0(2

miUHhFUHh

FUHh

i

j

jjiiiiiε

ε

                                (49) 

which are of order m . 

The lower triangular linear systems in (49) can be solved by forward substitution 

method directly and solving the i th system is subject to solving the )1( −i th system. So, 

we can solve the smaller systems in (49) instead of solving the large system (46). 

At the end, we note that the coefficient matrix )(ε
H , which is of order 22

mm × , has 

only 
4

)1( 22 +mm
 nonzero entries which is very satisfactory from the computational 

point of view. 

5.2. Volterra integral equations of the second kind 

Consider the following two-dimensional VIE of the second kind 

,)(),()()(
0

tttxxx
x

dukfu �+=                                                                               (50) 

where )(xu  is a real unknown function and )(xf  and ),( txk  are given 2
L  functions 

defined on D  and { }2,1,0:),( =≤≤= ixtS iitx , respectively. 
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Using a similar argument to that employed for the first kind integral equation (37), 

the integral equation (50) can be reduced to a lower triangular linear system of 

equations of order 2
m  in the form 

,)( )( FUHI =− ε                                                                                                 (51) 

where I  is the identity matrix of order 2
m  and F  and )(ε

H  are defined by (16) and 

(47), respectively. 

The lower triangular system (51) can directly be solved by forward substitution 

method or one can reduce it to m  lower triangular linear systems of equations of the 

form 

( )
( )
��

�
�

�

−=+=−

=−

�
−

=

,1,...,2,1,

,
1

0

)(),(2)()(),(2)(

)0()0()0,0(2)(

miUHhFUHhI

FUHhI
i

j

jjiiiiim

m

ε

ε
                      (52) 

where )(m
I  is the identity matrix of order m  and ),( ji

H  and )(i
U  are defined by (44) 

and (45), respectively. Similar to the linear systems in (49), the lower triangular linear 

systems in (52) also can be solved by forward substitution method directly and solving 

the i th system, is subject to solving the )1( −i th system. 

5.3. Fredholm integral equations 

In the rest of this section, we consider the following two-dimensional FIEs of the 

first and second kind 

� �=
1

0

`1

0
,)(),()( tttxx dukf                                                                                     (53) 

and 

� �+=
1

0

1

0
,)(),()()( tttxxx dukfu                                                                           (54) 

where )(xu  is a real unknown function and )(xf  and ),( txk  are given 2
L  functions 

defined on D  and DD × , respectively. 

From the orthogonality of BPFs follows that 

,)(.)( 2
1

0

1

0
Ihd

t =ΨΨ� � ttt                                                                                      (55) 

where I  is the identity matrix of order 2m . 

By approximating )(xu , )(xf  and ),( txk  in terms of BPFs, as we described in (38), 

the integral equations (53) and (54) can be respectively reduced to 

,2
KUhF ≅                                                                                                          (56) 

and 

 [
 D

ow
nl

oa
de

d 
fr

om
 s

ys
te

m
.k

hu
.a

c.
ir

 o
n 

20
24

-0
4-

29
 ]

 

                            12 / 22

https://system.khu.ac.ir/jsci/article-1-1428-en.html


Direct method to solve linear two-dimensional integral…                                           S. Bazm, E. Babolian 

 

173 

,2
KUhFU +≅                                                                                                    (57) 

where F , K  and U  are defined by (16), (19) and (39), respectively. 

Replacing ≅  with =  in (56) and (57), respectively gives 

,2 FKUh =                                                                                                          (58) 

and 

.)( 2
FUKhI =−                                                                                                  (59) 

Equations (58) and (59) are linear systems of equations of order 2
m  which have full 

coefficients matrix and can be solved by numerical methods. 

In practice, (59) is usually solved by direct Gauss elimination, with associated cost of 

about 6

3

1
m  multiplications and additions. This algorithm is safe, in the sense that it can 

not lead to unbounded errors as m is increased, provided that the condition number 

)(mQ  of the coefficient matrix 

( ) ,.)(
122 −

−−= KhIKhImQ                                                                             (60) 

does not become too large. 

For a fixed value m , if 2h  is close to a characteristic value of kernel k , since the 

coefficient matrix K  is an approximation of the kernel k , the condition number )(mQ  

may indeed be large. But, if k  is a bounded kernel such that for a real number M  

,),(,|),(| DDMK ×∈≤ txtx                                                                           (61) 

then 

,1,...,1,0,,,, −=≤ mqjliMk iljq                                                                (62) 

and in any natural matrix norm . , we obtain 

.1)(lim =
∞→

mQ
m

                                                                                                     (63) 

Thus condition number )(mQ  is likely to be approximately independent of m  and 

the linear equation (59) is unlikely to be ill-conditioned expect for those values of m  

that 2
h  is close to a characteristic value of kernel k . Therefore, Gauss elimination 

should cause no problem of accuracy. 

For the linear system (58), when m  increases the coefficient matrix Kh
2  tends to 

the singular matrix 0  and therefore 12 )( −
Kh  is a large number. So, in this case we are 

faced with an ill-conditioned system of equations and we may have big oscillations in 

the obtained solutions. 
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6. Numerical examples 

The method presented in this article is applied to some examples. The absolute 

values of the error at the selected grid points which are proposed as )10/,10/(),( lltx = , 

9,...,1,0=l , is reported. 

The 2L  error and 2L  rate of convergence are defined to be, respectively 

,|)()(|||||
2/1

1

0

1

0

2
2 �

�
��

	

 Ψ−= � � xxx dUue

t
m                                                              (64) 

and 

( ),||||/||||log: 2222 mmm ee=ρ                                                                              (65) 

where )(xu  is the exact solution of the integral equation and U  is the solution of the 

obtained linear system. For the considered examples, the values of 2|||| me  and mρ  are 

also inserted in the tables. 

All the computations were carried out with Mathematica 7  on a personal computer. 

Example 6.1. Consider the following first kind two-dimensional VIE 

� � ≤≤+=
t x

z txdydzzyutexytxf
0 0

,1,0,),()(),(  

with 

,
4

1

2

1
)1(

3

1
)(),( 232242

txtxexteettxtxf
ttt ++−+−+= −  

and the exact solution txetxu
t += −),( . The numerical results for this example are 

shown in Tables 1 and 2 . The results in Table 2  show that the method is not applicable 

to this example, when ε  is close to 0 . For a detailed description of this issue, see 

Section 7. 

Example 6.2. [27] For the following two-dimensional VIE of the second kind 

� � ≤≤++=
t x

txdydzzyuzxytxftxu
0 0

2 ,1,0,),())cos((),(),(  

where 

),(sin
4

1
))cos(1(

4

1
)sin(),( 225

txtxtxtxf −−−=  

the exact solution is )sin(),( txtxu = . Tables 3  and 4  show the numerical results for 

this example. 
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Table 1. Numerical results for Example 6.1 when 2/1=ε . 

( )10/,10/),( lltx =  10=m  20=m  40=m  80=m  160=m  

0=l  2102.9 −×  
2107.4 −×  

2103.2 −×  
2102.1 −×  

3109.5 −×  

1=l  2102.6 −×  
2108.5 −×  

2103.3 −×  
2108.1 −×  

3102.9 −×  

2=l  2107.8 −×  
2107.4 −×  

2104.2 −×  
2102.1 −×  

2100.6 −×  

3=l  2100.7 −×  
2109.3 −×  

2102 −×  
3109.9 −×  

3109.4 −×  

4=l  2107.6 −×  
2104.3 −×  

2107.1 −×  
3106.8 −×  

3103.4 −×  

5=l  2105.6 −×  
2101.3 −×  

2106.1 −×  
3108.7 −×  

3109.3 −×  

6=l  2107.5 −×  
2109.2 −×  

2104.1 −×  
3103.7 −×  

3106.3 −×  

7=l  2107.5 −×  
2107.2 −×  

2104.1 −×  
3109.6 −×  

3104.3 −×  

8=l  2102.5 −×  
2106.2 −×  

2103.1 −×  
3106.6 −×  

3103.3 −×  

9=l  2101.5 −×  
2106.2 −×  

2103.1 −×  
3104.6 −×  

3102.3 −×  

2
me  

2102.3 −×  
21069.1 −×  

31069.8 −×  
31083.4 −×  

31065.2 −×  

mρ  - 0.94 0.92 0.90 0.87 

 

 

Table 2: 2L  error values corresponding to different values of m  and ε  for Example 6.1. 

10/l=ε  5=m  10=m  20=m  40=m  

1=l  61066.1 +×  
141036.9 +×  

301038.8 +×  
471031.1 +×  

2=l  21047.1 +×  
71016.2 +×  

181052.3 +×  
321007.3 +×  

3=l  01055.6 +×  
21004.7 +×  

91012.5 +×  
231028.7 +×  

4=l  11030.5 −×  
01049.2 +×  

21059.1 +×  
81057.1 +×  

5=l  21021.9 −×  
21024.3 −×  

21069.1 −×  
31096.8 −×  

6=l  11044.1 −×  
21094.6 −×  

21049.8 −×  
21004.3 −×  

7=l  11096.1 −×  
11029.1 −×  

21082.9 −×  
21045.8 −×  

8=l  11043.2 −×  
11056.1 −×  

11012.1 −×  
21044.5 −×  

9=l  11086.2 −×  
11081.1 −×  

11025.1 −×  
21041.6 −×  

Example 6.3. Consider the following two-dimensional FIE 

� � ≤≤++=
1

0

1

0
,1,0,),())sin((),(),( txdydzzyuyetxtxftxu

z  

Where 

.
6

11

2

1
)sin(.)1(

2

1
),( 1 −+++= −−

etxexetxf
t

 

The exact solution is 1),( −= −t
xetxu . Table 5  illustrates the numerical results for 

this example. 
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Table 3: Numerical results for Example 6.2 when  2/1=ε . 

( )10/,10/),( lltx =  10=m  20=m  40=m  80=m  160=m  

0=l  3105.2 −×  
4102.6 −×  

4106.1 −×  
5109.3 −×  

6108.9 −×  

1=l  2102.1 −×  
3106.5 −×  

3106.2 −×  
3103.1 −×  

4103.6 −×  

2=l  2102.2 −×  
2100.1 −×  

3101.5 −×  
3105.2 −×  

3102.1 −×  

3=l  2101.3 −×  
2105.1 −×  

3104.7 −×  
3107.3 −×  

3108.1 −×  

4=l  2100.4 −×  
2109.1 −×  

3106.9 −×  
3108.4 −×  

3104.2 −×  

5=l  2108.4 −×  
2103.2 −×  

2102.1 −×  
3108.5 −×  

3109.2 −×  

6=l  2105.5 −×  
2107.2 −×  

2103.1 −×  
3106.6 −×  

3103.3 −×  

7=l  2100.6 −×  
2100.3 −×  

2105.1 −×  
3104.7 −×  

3107.3 −×  

8=l  2105.6 −×  
2102.3 −×  

2106.1 −×  
3100.8 −×  

3100.4 −×  

9=l  2108.6 −×  
2104.3 −×  

2107.1 −×  
3104.8 −×  

3102.4 −×  

2
me  

21007.2 −×  
21004.1 −×  

31018.5 −×  
31059.2 −×  

31029.1 −×  

mρ  - 00.1  00.1  00.1  00.1  

 

7.  Some comments on the results 

We approximated two-dimensional VIEs of the first and second kind to a family of 

linear systems of equations using the family{ : (0,1)}P
ε ε ∈ of operational matrices. These 

linear systems were depended onε . Two obvious questions are: 

)(i Is there any ε  that is optimum in some sense? 

)(ii How is the behavior of solutions when ε  varies in the interval )1,0( ? 

These questions are very important, especially when we are faced with the first kind 

VIEs. This type of equations are in general ill-posed and obtaining their numerical 

solution often leads to solving a linear system of equations of a large condition number. 

These equations may have no solution, while if a solution exists the solution is generally 

unstable, and small changes to the problem can cause a very large change to the answer 

obtained. 

In this section, we study these questions and analyze the numerical results reported in 

the tables. 

To obtain the family { })1,0(:)( ∈εε
P  of operational matrices, we have used the 

following approximations in (9): 
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��

�
�
�

+≥
+<≤

<
≅

��

�
�
�

+≥
+<≤−

<
=�

,)1(,
,)1(,

,,0

,)1(,
,)1(,

,,0
)(

hith
hitihh

iht

hith
hitihiht

iht
dtt

t

o
i εφ                                (66) 

where 1,...,1,0 −= mi . A criterion to specify ε  suitably is to solve the maxmin−  

problems 

.1,...,1,0|,|maxmin)(
])1(,[)1,0(

−=−−=
+∈∈

mihihtE
hiiht

i εε
ε

                                   (67) 

It can be easily shown that 

.1,...,1,0,
2

−== mi
h

Ei                                                                               (68) 

Therefore, 
2

1
=ε  is optimum in the sense that the approximation errors in (10) and 

(25) are minimum. 

Tables 2  and 4  also confirm the superiority of the choice 
2

1
=ε . We explain this by 

analyzing the behavior of solutions of linear systems (46) and (51) when m  is a fixed 

integer and ε  varies from 
2

1
 to 0  or to1. 

We observe in Tables 2  and 4  that, for a fixed value of m , the 2L  error 2|||| me  

increases when ε  varies from 
2

1
 to 0  or to1. This is because the error values 

,1,...,1,0),( −= miEi ε  in (67) become larger when ε  tends to 0  or to1. But the 

increment in 2|||| me  is not the same for VIEs of the first and second kind. 

Table 4: 2L  error values corresponding to different values of m  and ε  for Example 6.2. 

10

l
=ε  

5=m  10=m  20=m  40=m  

1=l  21060.4 −×  
21036.2 −×  

21020.1 −×  
31004.6 −×  

2=l  21033.4 −×  
21024.2 −×  

21013.1 −×  
31068.5 −×  

3=l  21020.4 −×  
21015.2 −×  

21008.1 −×  
31041.5 −×  

4=l  21016.4 −×  
210209 −×  

21005.1 +×  
31024.5 −×  

5=l  21014.4 −×  
21007.2 −×  

21004.1 −×  
31018.5 −×  

6=l  21021.4 −×  
21010.2 −×  

21005.1 −×  
31024.5 −×  

7=l  21068.4 −×  
11019.2 −×  

21009.1 −×  
31043.5 −×  

8=l  21018.5 −×  
21033.2 −×  

21015.1 −×  
31074.5 −×  

9=l  21024.5 −×  
21052.2 −×  

21024.1 −×  
31014.6 −×  
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Indeed, when ε  changes from 
2

1
 to zero the matrix )(ε

H  tends to the singular matrix 

0  and thus ( ) 1)( −ε
H  may be very large. So, the linear system (46) is an ill-conditioned 

system and we may have very large changes in the solutions (see Table 2 ). But, since 

VIEs of the second kind are well-posed problems, the solution of (51) is stable when ε  

varies from 
2

1
 to zero although the 2L  error 2|||| me  increases. 

When ε  changes from 
2

1
 to 1, again the 2L  error 2|||| me  increases for both VIEs of 

the first and second kind but for the first kind problem we again may have oscillations 

in the solutions because this problem is in general ill-possed (see Tables 4,2 ). 

Therefore, as we concluded mathematically, the numerical results of Tables 41−  

also show that 
2

1
 is the best value for ε . 

Now, we analyze the behavior of solutions of linear systems (46) and (51) when ε  is 

a fixed value and m increases. For this purpose, we define 

),1,0(,1,)(.),( 1)()( ∈≥−−= − εε εε mHIHImQ  

where )(ε
H  is the matrix defined by (47). By the same argument used at the end of 

Section 5 , we can show that 

).1,0(,1),(lim ∈=
∞→

εε mQ
m

 

Therefore, for a fixed value )1,0(∈ε , the condition number ),( mQ ε  is independent 

of m  and the linear system (51) is unlikely to be ill-conditioned (expect for those values 

of m  that 2h  is close to an eigenvalue of matrices 1,...,1,0,),( −= miH
ii . But for the 

linear system (46), ( ) 1)( −ε
H  becomes a large number when m  increases and we have 

an ill-conditioned system. So, we may have big oscillations in the solutions (see Table 

2 ). 

Table 5:  Numerical results for Example 6.3. 

�
�

�
�
	



=

10
,

10
),(

ll
tx  

10=m  20=m  40=m  80=m  160=m  

0=l  1107.2 −×  
1102.1 −×  

2102.6 −×  
2101.3 −×  

2106.1 −×  

1=l  2108.1 −×  
2105.3 −×  

2108.2 −×  
3102.4 −×  

3108.7 −×  

2=l  1100.1 −×  
2108.3 −×  

3106.4 −×  
2103.1 −×  

3103.2 −×  

3=l  2106.4 −×  
2103.5 −×  

2100.1 −×  
3100.9 −×  

3104.1 −×  
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4=l  4100.2 −×  
3102.7 −×  

2109.1 −×  
3106.3 −×  

3106.3 −×  

5=l  1106.1 −×  
2103.5 −×  

2102.2 −×  
2100.1 −×  

3109.4 −×  

6=l  1104.1 −×  
2107.2 −×  

3108.3 −×  
4100.1 −×  

3104.2 −×  

7=l  1102.1 −×  
3100.9 −×  

3108.3 −×  
3101.4 −×  

4102.8 −×  

8=l  1101.1 −×  
2103.3 −×  

3104.7 −×  
4105.2 −×  

4100.1 −×  

9=l  1100.1 −×  
2107.2 −×  

3103.8 −×  
3100.2 −×  

5102.2 −×  

2
me  

11039.1 −×  
21078.5 −×  

21078.2 −×  
21037.1 −×  

31085.6 −×  

mρ  - 26.1  06.1  00.1  00.1  

)(mQ  51654.7  03992.7  93547.6  91017.6  90390.6  

At the end, suppose that ε  is a fixed value in )1,0( . For this value of ε , the 

approximate relations (10) and (25) are exact at the points ,1,...,1,0,)( −=+= mihit ε  

and the approximate solutions obtained by this method are more accurate at the points 

{ }1,...,1,0),)(,)(( −=++ mihihi εε  of D , specially when 
2

1
=ε . 

 

8. conclusions 

A method based on block-pulse functions and their operational matrix of integration 

for the solution of linear two-dimensional integral equation is proposed. This approach 

transforms two-dimensional VIEs of the first and second kind into a family of linear 

systems of equations. The coefficients matrices of the obtained linear systems, )(ε
H  and 

)(ε
HI − , are block lower triangular matrices whose blocks are also lower triangular 

matrices. This is very satisfactory from the computational point of view, because we 

need to compute only 
4

)1( 22 +mm
 of integrals in (21) to compute these matrices. 

Moreover, we do not use any projection methods such as Galerkin, collocation, etc. 

to set up the linear systems (46) and (51). So, in comparison with other methods, such 

as the methods applied in [28, 29], the cost of setting up linear systems is very low. On 

the other hand, the linear systems (46) and (51) can be solved directly by forward 

substitution method, which is very advantageous computationally, so that we can 

increase m to get more accurate approximate solutions without being anxious about the 

number of operations. 
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This approach also reduces the two-dimensional FIEs of the first and second kind 

into linear systems of equations. But for these equations the coefficients matrix of the 

obtained linear system is a full matrix and for large m solving these systems directly by 

Gauss elimination method can lead to surprisingly large computing times. But we can 

seek some ways of reducing this cost, for example constructing an iterative scheme for 

solving these systems. 

The applicability and accuracy of the method is checked on some examples. The 

validity of arguments of Section 7  can be checked by the numerical results obtained for 

these examples. For instance, the numerical results reported in the tables show the first 

order of convergence which is consistent with the claim of Theorem 3.4 . Also, all the 

presented tables suggest us to choose 
2

1
=ε  which is again consistent with the 

arguments of Section 7 . 

For Example 6.3 , the condition numbers )(mQ  which are reported in Table 5  show 

that the problem is well-conditioned. This confirms the arguments at the end of Section 

5 . In the case of two-dimensional FIEs of the first kind, because of unexpected 

oscillations and ill-conditioning of the problem, we do not recommend this method. 

Finally, it is clear that the analysis of this paper extends to −N dimensional Volterra 

and Fredholm integral equations. We have dealt with the case 2=N  mainly for the 

sake of clarity. 
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