Search published articles


Showing 4 results for Spectral Analysis

Yadollah Balyani, Mohammad Saligheh, Hossein Asakereh, Mohammad Hossein Nasserzadeh,
Volume 15, Issue 37 (9-2015)
Abstract

Precipitation is one of the most intractable elements. The oscillating behavior of the crucial environmental planning (explicit and tacit knowledge of the behavior), is the key variable. Spectrum analysis techniques to understand the behavior of overt or covert methods suitable for the extraction and analysis of climate oscillations with different wave lengths. The size range of the distribution variance across all wave lengths may provide time series. In this study, data from 37 stations Heleh and Mond watershed (both rain and synoptic) from its inception until 2011,  who had over 30 years of data, to analyze the cycle of annual rainfall, interest has been taken. So that the space is 3-2 year cycles in every area of study, the highest annual rainfall events are returned. On this basis, the Story of annual precipitation 95 percent for each of the stations under study and cycle meaningful estimate of the time series of basin data were extracted.
Rahmatollah Shojaei Moghadam, Mostafa Karampoor, Behroz Nasiri, Naser Tahmasebipour,
Volume 18, Issue 51 (7-2018)
Abstract

The purpose of this study is to analyze and analyze Iran's precipitation over the past half-century(1967-2017). For this purpose, the average monthly rainfall of Iran during the statistical period of 50 years was extracted from Esfazari databases (Which is provided using data from 283 stations of Synoptic and Climatology). Regression analysis was used to analyze the trend and to analyze the annual and monthly rainfall cycles of Iran, spectral analysis was used. Investigation and analysis of monthly precipitation trend indicates that except for central Zagros (Lorestan and Chaharmahal va Bakhtiari and Gorgan areas, where rainfall in winter season has increased trend), in other parts of the country and in other seasons, the trend of decline Precipitation is prevalent. The study of Iranian rainfall cycles has been shown  that Most of Iran's rainfall cycles are 2 to 4 years old and have a short term course. Meanwhile, there are two middle-cycle 25-year cycles in January-July and two long-term 50-year cycles in March and December, indicating a trend in the March and December rainfall. The two months of February and October lacked a clear cycle. The analysis of the auto-correlation model of rainfall showed that the high spatial auto-correlation model in winter was consistent with the western, southwestern and coastal of the Caspian Sea and covered about 14% of the country's. The low spatial auto-correlation model is found in sparse spots in the southern, central and southeastern regions of the country in winter and spring, and covered about 7.5% of the country's. The results of this study indicate that the overall trend of Iran's rainfall is decreasing trend and only in winter, in the small regions of the country, the increase trend is observed.

Mrs. Atefeh Shahmohammadi, Dr. Ali Bayat, Mr. Saeed Mashhadizadeh Maleki,
Volume 20, Issue 58 (10-2020)
Abstract

Urban development and air pollution are among the most important issues related to climate. The expansion of urbanization and urban development, population growth, industrial development and excessive use of fossil fuels significantly increased air pollution and it is more than the capacity of the environment. In our country, the emissions of air pollutants in some metropolitan areas have reached a dangerous level, Mashhad is considered to be the most polluted cities of the country in some days of the year. Nitrogen dioxide is one of the indicators of air pollution. In this study, the OMI data and atmospheric parameters such as wind, surface temperature, and horizontal visibility data for the period from 2004 to May 2016 were used to investigate the air pollution in Mashhad. The results show that the maximum (minimum) nitrogen dioxide levels occur in the cold (hot) season. The highest amount of nitrogen dioxide in January is equal to 5.56 × 1015  molec/cmand its lowest value in September is 4.18 × 1015  molec/cm2. Standard deviation of nitrogen dioxide also indicates that the greatest changes occur in cold seasons. Also, the results showed that the dominant wind in the city of Mashhad is from the south, and most of the winds are slow. Correlation coefficient of nitrogen dioxide with wind and surface temperature is -0.36 and -0.57, respectively, which shows the higher importance of temperature in nitrogen dioxide changes in Mashhad city. The correlation coefficient of nitrogen dioxide with horizontal visibility is -0.15, which indicates that with increasing nitrogen dioxide contamination, horizontal visibility decreases. Spectral analysis of least squares of the six and twelve-month periods of rotation was observed, they were also statistically significant. After eliminating the significant components of the time series of the average monthly nitrogen dioxide, the trend was calculated. The amount of nitrogen dioxide in each year for Mashhad was 2.41 × 1013  molec/cm2.

Mrs. Atefeh Shahmohammadi, Dr. Ali Bayat, Mr. Saeed Mashhadizadeh Maleki,
Volume 22, Issue 67 (12-2022)
Abstract

Air pollution is one of the major problems in large cities, which can be harmful to human health and the environment. Isfahan is one of the most polluted cities in Iran.
 Its geographic location and low wind speed, industrial activities, transportation, agriculture, and other human activities have created critical air pollution conditions for the city. Nitrogen dioxide is an important pollutant of air pollution, which is monitored using ground stations and satellite measurements. In this paper, daily data of nitrogen dioxide from Ozone Monitoring Instrument (OMI) satellite sensor, wind and surface temperature of Isfahan Meteorological Station data were used between October 2004 and May 2016. The average amount of nitrogen dioxide in the measured range is .The highest amount of nitrogen dioxide ( ) was observed in December and the lowest ( ) was observed in July. The standard deviation of the winter season ( ) is higher than the summer season ( ). The correlation coefficient of nitrogen dioxide with wind and temperature was -0.41 and -0.54, respectively, which indicates the higher importance of temperature in nitrogen dioxide changes. After the formation of the time series, the average monthly nitrogen dioxide content was determined using spectral analysis of least squares of statistically meaningful peaks corresponding periods. These statistically meaningful peaks corresponding periods have been eliminated from the mean monthly nitrogen dioxide time series, and with the linear fit on the residual time series, the trend has been calculated. The nitrogen dioxide trend for Isfahan is per year with 95% confidence.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb