Showing 7 results for shamsi
Joan Amini, Mehri Akbari, Zahra Hejazizadeh, Ali Akbar Shamsipur,
Volume 0, Issue 0 (3-1921)
Abstract
Green spaces have a key role in moderating urban micro-climatic conditions, beautifying urban landscapes, citizens' leisure time, and also reducing noise and air pollution and absorption of Aerosols. In addition to the significant advantages of green space, water consumption and irrigation needs is one of the main limitations of green space development in Tehran that nowadays faced to critical water shortage. Calculating water footprint in green spaces, as the total amount of fresh water required to maintain green space throughout the year, is one of the indicators by which the compatibility of tree and plant species with climatic conditions can be assessed. The main object of this study is to estimate the water footprint of Laleh Park in Tehran province of Iran. The Green space soil water balance (SWB) model was used to calculate water footprint in this park. The required data that including: average daily temperature, total precipitation and moisture depth of zero to 30 cm of soil, were obtained from the Geophysical meteorological station of Tehran for 2018. Data related to soil water drainage were also estimated based on standard laboratory samples of green space soils. The results indicated that in the warm months (June to September) of the year, the total water footprint of Laleh Park in Tehran was 4 to 5 thousand cubic meters per month (m3/m), while the winter months (December to March) total estimated water footprint were less than 1400 cubic meters per month. The generalization of 30 Centimeters depth soil moisture data of the geophysical meteorological station to Laleh Park, released that, in the warm month of the year, Green Water (groundwater or surface water) had the largest portion (more than 90%) in the water footprint of Laleh Park, While in the winter months (December and to march), the green water (water from snow and rain) is main participant in providing soil moisture, more than 90% of the total water footprint of Laleh Park has related to this source.
Hosein Shamsi, Rahmat Mohammadzadeh,
Volume 0, Issue 0 (3-1921)
Abstract
Lefebvre's theory has received much attention in the field of space production, and its importance is especially in the fact that it is systematically integrated in the categories of city and space as a comprehensive and comprehensible social theory.
The traditional planning of land use is completely abstract and formal and devoid of perceptual and meaningful components, but Lefouri's trialectic approach is not like this and consists of three virtues (spatial practice-spatial representation and representational space) that are in communication with each other and collaboratively and at the same time in the moment. They form, produce a whole.This research has a descriptive and analytical method, and in terms of its purpose, it is fundamental. The changes caused by the arrival of new paradigms in the approaches of urban planning and urban design, which assigns a different nature to the strategic system of urban development changes, and on the other hand, new attention to space and finding the concept of living space to be important, it seems that Lefebvre's trialectic approach is contrary to traditional user planning. The land values the everyday space and lived experience of the residents and can create spaces that increase the sense of place and sense of belonging of the residents to their living space.The review of the concepts shows that the concept of lived space (abstract-concrete space) was influenced by different approaches of the philosophy of science (interpretative and critical) and now it is witnessing an approach change (paradigm), which can show social transformations. This study shows that space-place (living space or space-love) is, unlike the previous definition of space based on positivist (mental and perceptual), abstract and generalist approaches, mainly a demarcated area of space that has physical-concrete characteristics and It is formed and filled with meaning through human experience.
Faeze Shoja, Salimeh Sadeghi, Shamsipour,
Volume 0, Issue 0 (3-1921)
Abstract
The aim of this research is to evaluate the heat mitigation index (HMI) in the Tehran metropolitan area using the Urban Cooling Model(UCM)approach in a spatial framework. UCM produces maps of the Heat Mitigation Index. This index estimates the cooling potential of urban green spaces in a given location, taking into account various parameters such as evapotranspiration, tree shading, albedo, rural reference air temperature, urban heat island intensity, air temperature maximum blending, and maximum cooling distance. The assessment of environmental factors influencing the UCM in the study area revealed that the urban heat island effect was least intense in regions 1, 22, and the northern parts of region 4 of Tehran municipality, where there are scattered trees, shrubs, open low-rise buildings, and water bodies. The temperature differential between the city and the suburbs ranged from 0 to 1.3 degrees Celsius. However, the study area's central parts showed the highest intensity of the urban heat island, particularly in regions 21, 13, and 14. These regions have a dense and compact texture and an expansion of impervious surfaces, resulting in the lowest values of the evapotranspiration index and albedo.Based on these parameters, the study area's HMI index showed that the cooling capacity varies from 0.08 in the central parts of the city to 0.9 in areas affected by green spaces and water bodies. The maximum cooling capacity index is concentrated in areas with dense and scattered tree cover in the region. On average, these areas have been able to neutralise 2.48 degrees Celsius of the urban heat island effect with a cooling capacity of 63%. The methodology employed in this research can be used as a reference for urban designers in integrating urban cooling approaches and heat island mitigation strategies in urban planning and design.
Mostafa Karimi, Ghasem Azizi, Aliakbar Shamsipour, Lila Rezaee Mahdi,
Volume 16, Issue 41 (6-2016)
Abstract
In this study is simulation of role of topography in thickness and Inland penetration of sea-breeze in southern coast of the Caspian Sea. The RegCM4 as a regional scale climate model coupled with a lake model and also the reanalysis data of NCEP / NCAR used to determine of the initial conditions of the model. The model was run during the peak of sea breeze on the southern coast of the Caspian Sea (July 2002) in both conditions (with mountains) and (without mountains). the outputs indicated that in without topography condition depth of the sea breeze will increase to the current position the southern slopes of the Alborz Mountains ( latitude ᵒ35 ) but the land breeze in the area is gone. The maximum speed and changes in wind direction observed on the coast southeast and central Alborz respectively. In addition with non-topography conditions, the thickness of sea breeze in different areas significantly has increased with the highest rate on the eastern coast (longitude ᵒ53).
Fatemeh Ghiasabadi Farahani, Faramarz Khoshakhlagh, Aliakbar Shamsipour, Ghasem Azizi, Ebrahim Fattahi,
Volume 18, Issue 48 (3-2018)
Abstract
The present research about the spatial changes of precipitation is mainly focused on western areas of Iran. Precipitation data for three seasons of fall, winter, and spring have been obtained from Esafzari Database, with 15*15 km spatial resolution in the form of a Lambert Cone Image System for the period from 1986 to 2015. To examine the prevailing pattern of precipitation in west of Iran, we have used geostatistical methods of spatial autocorrelation. The changes in precipitation trends have been analyzed using parametric and non-parametric analyses of regression and Mann Kendal. We have used MATLAB for analysis of the data. We have also used ArcGIS and Surfer for drawing maps. The results of inter-decade changes of positive spatial autocorrelation of precipitation in west of Iran have indicated that there has been a decline in spatial extent of the positive spatial autocorrelation pattern in spring and fall, except for winter with a negligible increasing trend. Nevertheless, except for the second period, no considerable spatial changes were observed in the spatial pattern of precipitation in the region. However, there was a decreasing trend in the negative spatial autocorrelation of precipitation in annual and seasonal scales. The results of trend analysis have indicated that there was a decreasing trend in a vast area of the west parts of the country in annual scale and also in winter. Although there was an increasing trend in precipitation in fall and spring, but the trend was not significant in 95 % of confidence interval. The results of Man Kendal test have confirmed the results obtained from linear regression.
Shamsi Sadat Mir Asadollahi, Sadraldin Motavali, Gholam Reza Janbaz Ghobadi,
Volume 20, Issue 59 (12-2020)
Abstract
Natural disasters are a set of harmful events that are natural origin that sometimes human factors are also effective in exacerbating. In the same vein strengthening the social and economic component and after that resiliency can play an important and effective role in reducing flood damage. This research is applied in terms of purpose and descriptive –analytical and field nature. Survey method and data gathering tool were closed questionnaires, the analysis method is based on correlation and regression test. The statistical population includes citizens living around the river and flood areas that 383 people selected as sample and the questionnaire was distributed by cluster sampling among respondents, according to research finding , the average social resilience 1/60 , average economic aberration ( the amount of damage ) 4/53 ,average capacity with ability to compensate 8/69 , eventually average return to appropriate condition 4/67 .in the test section, hypotheses are determined according to the result of the regression test and correlation which has a significant relationship between urban and urban spatial and social dimensions. Strengthen local organs and organizations in a decentralized state , one of the important ways to increase the social participation of citizens of Gorgan during the crisis.by providing people's participation and strengthening the people's economic ability when natural hazards occur including flood, the initiative of the people is strengthened and the scope for reducing the damage caused by the flood is reduced . people are faced with real and tangible issues with the executive and so on their gap crisis management and conflicts of interest will diminish.
Ms Zienab Hosinpoor, Dr. Aliakbar Shamsipour, Dr. Mostafa Karimi, Dr. Faramarz Khoshakhlagh,
Volume 23, Issue 68 (3-2023)
Abstract
Heat waves are important phenomena in Iran, And its upsurge in recent years seems to have a high upside trend.This climate has a negative impact on agriculture, forest fire and forestry, water resources, energy use and human health.The purpose of the research is to explain the frequency, time distribution, continuity of thermal waves, and the identification of its occurrence in the southern foothills of central Alborz.Therefore, using the statistical methods and maximum daily temperature data of Tehran (Mehrabad), Qazvin and Semnan stations for the statistical period of 30 years (1966-2016), the mentioned characteristics were extracted.In the first step, the nonparametric method of Kendal was used to understand the variability and awareness of the monthly trend of maximum temperatures in the study period.In order to determine the severity, duration and frequency of heat wave events, the percentiles (95.98) and normalized temperature deviation (NTD) were used.The results of the study showed that the frequency of short-wave heat waves was higher.Most frequencies are related to 2-day waves, respectively, and Tehran (Mehrabad), Semnan and Qazvin stations are more frequent.The highest frequency of annual events was detected at stations in Tehran (11 waves in 2010), in Semnan (9 waves in 2015) and Qazvin (7 waves in 2015), respectively.The highest frequency of monthly heat wave events was recorded in June and September.The highest continuation (15 days) was obtained in March 2008 with the percentile method at Mehrabad station.In the normalized deviation method, the temperature was calculated as a warm wave (12 days) in 2008.The highest annual frequency of heat loss occurred in all three stations in 2015.The evolution of the process indicated an increase in the incidence of thermal waves in the cold period of the year But in other chapters, no meaningful changes were made.As it says, the decline in cold winter temperatures is on the southern slopes of Alborz.The results of the two methods showed that in the normalized deviation of the temperature, the number of thermal waves more than the percentile method was recorded, but in the percentile method, the thermal wave was more prominent in the cold period of the year.